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Abstract Cells of all living organisms contain complex

signal transduction networks to ensure that a wide range

of physiological properties are properly adapted to the

environmental conditions. The fundamental concepts and

individual building blocks of these signalling networks

are generally well-conserved from yeast to man; yet, the

central role that growth factors and hormones play in the

regulation of signalling cascades in higher eukaryotes is

executed by nutrients in yeast. Several nutrient-controlled

pathways, which regulate cell growth and proliferation,

metabolism and stress resistance, have been defined in

yeast. These pathways are integrated into a signalling

network, which ensures that yeast cells enter a quiescent,

resting phase (G0) to survive periods of nutrient scarce-

ness and that they rapidly resume growth and cell pro-

liferation when nutrient conditions become favourable

again. A series of well-conserved nutrient-sensory protein

kinases perform key roles in this signalling network: i.e.

Snf1, PKA, Tor1 and Tor2, Sch9 and Pho85–Pho80. In

this review, we provide a comprehensive overview on the

current understanding of the signalling processes

mediated via these kinases with a particular focus on how

these individual pathways converge to signalling networks

that ultimately ensure the dynamic translation of extra-

cellular nutrient signals into appropriate physiological

responses.
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Introduction

All living organisms have evolved complex signal trans-

duction networks that ensure the fast and optimal adapta-

tion of cellular metabolism to changes in the environmental

conditions. Since signal transduction components and

mechanisms are highly conserved among all eukaryotes,

the unicellular eukaryote Saccharomyces cerevisiae, or

budding yeast, is often used as a model organism to study

cell signalling. For S. cerevisiae cells, the constantly fluc-

tuating nutrient content of the environment is a key

determinant of cell cycle progression and growth, stress

resistance and metabolism. The nutrient-induced signalling

network enables yeast both to optimally profit from rich

nutrient conditions by stimulating cell proliferation and to

survive periods of nutrient scarceness by inducing the entry

into a quiescent, resting phase, called the stationary phase

(G0) (Winderickx et al. 2003; Roosen et al. 2004; Zaman

et al. 2008). In general, a nutrient is sensed by the sig-

nalling network (i) externally, via a receptor protein in the

plasma membrane, which after binding of the nutrient

adopts a new conformation that activates a downstream

signalling cascade, or (ii) internally, after uptake of the

nutrient, possibly followed by its metabolism, thereby

causing a change in its intracellular concentration which, in
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turn, modulates downstream signalling (Forsberg and

Ljungdahl 2001; Holsbeeks et al. 2004).

Yeast can use a wide variety of substances as a nutrient

source. Nevertheless, some nutrients are preferred over

others and nutrient metabolism is regulated in such a way

that the preferred nutrient source is consumed first. Espe-

cially, the carbon source has a high impact on S. cerevisiae

metabolism. In contrast to most yeast species, S. cerevisiae

cells will, given that all other essential nutrients are present

in adequate amounts, preferably ferment glucose and other

rapidly fermentable sugars to ethanol and acetate, although

respiration would be energetically more favourable. It is

believed that this phenomenon, called the Crabtree effect,

gives yeast cells a competitive advantage, as the ethanol

produced during fermentation inhibits growth of other

micro-organisms. When glucose becomes limiting yeast

will enter the diauxic shift, during which metabolism shifts

from fermentation to respiration to allow usage of ethanol

and acetate, which have accumulated during the fermen-

tative growth phase. Finally, also when these carbon

sources have been exhausted, cells will enter the stationary

phase (G0). Importantly, when another essential nutrient

becomes limiting before glucose, yeast cells directly enter

the stationary phase without passing through all other

growth phases (Fig. 1). This review will focus on the most

important nutrient kinases, i.e. Snf1, PKA, Tor1 and Tor2,

Sch9 and Pho85–Pho80, and clarify their roles in adapta-

tion to the specific nutrient-induced stress conditions.

Nutrient-induced signalling in S. cerevisiae

The main glucose repression pathway

The main glucose repression or catabolite repression

pathway controls the adaptation of yeast carbon metabo-

lism to the availability of glucose in the medium. In the

presence of glucose, the central component of this path-

way, the serine/threonine protein kinase Snf1 is inacti-

vated, resulting in the transcriptional repression of genes

that are not needed during fermentative growth on glucose,

i.e. genes encoding for enzymes involved in gluconeo-

genesis, the Krebs cycle, respiration and the uptake and

metabolism of alternative carbon sources (Fig. 2) (Ronne

1995; Gancedo 1998; Hedbacker and Carlson 2008).

Structure and regulation of the Snf1 kinase

The Snf1 kinase belongs to the well-conserved Snf1/AMP-

activated protein kinase (AMPK) family (Woods et al.

1994; Hardie 2007). As the other members of this family,

yeast Snf1 functions in a heterotrimeric complex, com-

prising a catalytic a subunit (Snf1), a scaffolding as well as

regulatory b subunit (Gal83, Sip1 or Sip2) and a regulatory

c subunit (Snf4) (Celenza and Carlson 1989; Celenza et al.

1989; Yang et al. 1994; Jiang and Carlson 1997; McCartney

et al. 2005). The Snf1 kinase complex is controlled through

multiple mechanisms. When high levels of glucose

are present, an auto-inhibitory interaction between the

N-terminal catalytic domain and the C-terminal regulatory

domain of Snf1 inactivates the protein kinase. This auto-

inhibition is relieved when glucose levels drop, which

correlates with an increased interaction between the c
subunit Snf4 and the Snf1 regulatory domain (Jiang and

Carlson 1996).

Additionally, full activation of Snf1 requires phosphor-

ylation of a conserved threonine residue (Thr210) in the

activation loop of the Snf1 catalytic domain (Estruch et al.

1992; Wilson et al. 1996; McCartney and Schmidt 2001).

Three upstream kinases, Sak1, Elm1 and Tos3, are

responsible for phosphorylation of this threonine residue

(Sutherland et al. 2003). These kinases appear to be func-

tionally redundant, since only the absence of all three

causes a snf1D mutant phenotype. Nevertheless, it was

reported that their role in Snf1 activation is determined by

the combination of the b subunit present in the kinase

complex and the growth/stress conditions tested

Fig. 1 Typical growth profile of a fermentative batch culture of S.
cerevisiae. A schematic representation of the increase in cell number

and cell density of a batch culture of S. cerevisiae inoculated in rich

medium containing the rapidly fermentable sugar glucose as carbon

source (dark line). After a short adaptive lag phase, yeast consumes

glucose during the exponential fermentative growth phase. When the

glucose becomes limiting, yeast cells enter the diauxic shift and shift

from a fermentative to a respiratory metabolism. In the post-diauxic

growth phase, the cells resume growth using ethanol, acetate and

other products produced during glucose fermentation as carbon

source. Finally, when these carbon sources are exhausted, the cells

enter a quiescent state, the stationary phase (G0), with the ultimate

goal of surviving the starvation period. When exponentially growing

yeast cells are transferred to medium containing glucose but missing

an essential nutrient such as nitrogen or phosphate, they arrest growth

and enter the G0 state due to nutrient deprivation (light line)
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(Hedbacker et al. 2004; Kim et al. 2005; McCartney et al.

2005). Dephosphorylation of Snf1 is mediated by the

protein phosphatase complex Glc7–Reg1 (Ludin et al.

1998; Sanz et al. 2000; McCartney and Schmidt 2001).

Glc7 is the catalytic subunit of the phosphatase complex,

whereas Reg1 is the regulatory subunit that targets the

phosphatase to Snf1 since it can bind to the catalytic

domain of the protein kinase. In yeast cells, lacking a

proper Glc7–Reg1 function, the Snf1 kinase complex is

constitutively active resulting in loss of glucose repression

(Niederacher and Entian 1991; Tung et al. 1992; Tu and

Carlson 1994, 1995; Huang et al. 1996; Hong et al. 2005).

However, gluconeogenic genes remain repressed in a

reg1D strain, while genes involved in the utilization of

alternative carbon sources are derepressed (Schuller 2003).

The interaction between Glc7–Reg1 and the Snf1 kinase

complex is stimulated upon glucose resupplementation,

which was proposed to facilitate the fast dephosphorylation

and subsequent inactivation of Snf1 by the phosphatase

complex (Sanz et al. 2000). In support of such a crucial role

for the phosphatase in the regulation of Snf1 activity, it was

recently reported that the dephosphorylation rate of Snf1 is

more subject to glucose regulation than the phosphoryla-

tion rate (Rubenstein et al. 2008). However, it also appears

that the catalytic activity of the Glc7–Reg1 phosphatase

itself is not controlled by glucose, but rather Snf1 itself, in

such a way that the ability of the Snf1 activation loop to act

as a substrate for Glc7–Reg1 is adapted to glucose avail-

ability (Rubenstein et al. 2008).

Finally, also the subcellular localization of the Snf1

kinase complex is regulated and depends on the b subunit.

During growth on glucose medium, all Snf1 complexes are

localized in the cytoplasm. However, upon glucose limi-

tation, the Snf1–Sip1 complex translocates to the vacuole

and the Snf1–Gal83 complex goes into the nucleus,

whereas the Snf1–Sip2 complex remains in the cytoplasm

(Vincent et al. 2001). Certainly, the regulation of the nu-

cleocytoplasmic distribution of Snf1–Gal83 is important,

as Snf1 has such a great impact on gene expression.

Although in a snf1D mutant Gal83 exhibits a glucose-

regulated nuclear accumulation, it was shown that the re-

localization of the Snf1–Gal83 complex to the nucleus

requires both Gal83 as well as an active Snf1 catalytic

subunit (Hedbacker et al. 2004; Hedbacker and Carlson

2006). Cytoplasmic retention of inactive Snf1–Gal83

complexes is probably necessary to maintain accessibility

of the complex to the Snf1-activating kinases.

Downstream targets of Snf1

The most important Snf1 target is the transcriptional

repressor Mig1. In the presence of glucose, Mig1 is

localized in the nucleus and inhibits the expression of many

glucose-repressed genes by binding to their promoter in

association with the corepressor complex Cyc8/Ssn6–Tup1

(Nehlin and Ronne 1990; Keleher et al. 1992; Lundin et al.

1994; Treitel and Carlson 1995). Glucose exhaustion

induces phosphorylation of Mig1 by the activated Snf1

complex, which abolishes the interaction between Mig1

and the repressor complex, causing a relief of glucose

repression (Treitel et al. 1998; Smith et al. 1999; Papami-

chos-Chronakis et al. 2004). Phosphorylation of Mig1

triggers at the same time its interaction with the nuclear

export factor Msn5, resulting in nuclear exclusion of Mig1

(De Vit et al. 1997; De Vit and Johnston 1999).

The transcriptional activators Cat8 and Sip4 are two

additional effectors of Snf1 that control the expression of

gluconeogenic genes in response to glucose exhaustion

(Hedges et al. 1995; Lesage et al. 1996; Randez-Gil et al.

1997). Both the expression and activity of these factors are

strictly regulated. The gene encoding Cat8 is subject to

Fig. 2 The main glucose repression pathway in S. cerevisiae. In the

presence of high levels of glucose, the Snf1 kinase complex is

inactive due to an auto-inhibitory interaction between the catalytic

domain (CD) and the regulatory domain (RD) of Snf1. Activation of

Snf1 upon glucose exhaustion requires the phosphorylation of Thr210

in the activation loop of the catalytic domain of Snf1 and the binding

of Snf4 to the regulatory domain of Snf1, which is necessary to lift

Snf1 auto-inhibition. The phosphorylation status of the threonine

residue is controlled by the upstream kinases Sak1, Elm1 and Tos3

and the Glc7–Reg1 phosphatase complex. Activated Snf1 phosphor-

ylates Mig1, thereby stimulating the translocation of the repressor to

the cytoplasm, which relieves several gene families of glucose

repression. The glucose signal that controls Snf1 activity is possibly

transduced via Hxk2 to Glc7–Reg1 and via a sensing of the AMP/

ATP ratio by Snf4. Arrows and bars represent positive and negative

interactions, respectively. Dashed lines represent putative or indirect

interactions. See text for further details
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Mig1-dependent repression under high-glucose conditions

(Hedges et al. 1995), and once synthesized upon glucose

exhaustion, the protein must first be phosphorylated by

Snf1 to obtain its transcriptional activity (Rahner et al.

1996; Randez-Gil et al. 1997). Cat8 induces transcription

of SIP4 (Vincent and Carlson 1998), and subsequent Snf1-

dependent phosphorylation of Sip4 then leads to proper

induction of gluconeogenic genes by both Cat8 and Sip4

(Hiesinger et al. 2001).

Apart from carbon metabolism, Snf1 affects several

other processes via the regulation of transcription factors as

well. In particular, the activity of Msn2/4 and Hsf1, tran-

scriptional activators involved in general stress responses,

and of Gln3, a transcriptional activator of genes induced

upon nitrogen depletion, was shown to be modulated by

Snf1 (Bertram et al. 2002; Mayordomo et al. 2002; Hahn

and Thiele 2004). Furthermore, Snf1 does also influence

transcription in a more indirect manner. As histone kinase,

it phosphorylates Ser10 in histone H3, thereby stimulating

chromatin remodelling in concert with the Gcn5 acetyl-

transferase, and recruiting co-activators and the TATA-

binding protein to the promoter of genes like INO1,

encoding inositol 1-phosphate synthase, and HXT4, which

encodes one of the high-affinity glucose transporters (Lo

et al. 2001; van Oevelen et al. 2006).

Transducing the glucose signal to Snf1

An important issue about the glucose repression pathway

that remains unclear is how the glucose signal is exactly

transduced to the Snf1 kinase complex or its regulators: the

kinases Sak1, Elm1 and Tos3 and the phosphatase complex

Glc7–Reg1. At the moment, two major hypotheses exist. In

mammalian cells, the AMP-activated protein kinase

(AMPK), homologue of Snf1, is activated by AMP that

binds to the c subunit. It was, therefore, proposed that the

AMP/ATP ratio or the AMP levels in yeast also act as a

signal for Snf1 activation, since they reflect the rate of

glucose phosphorylation and are well correlated with Snf1

activity under a variety of growth conditions (Wilson et al.

1996). Early studies reported that Snf1 could not be acti-

vated by AMP in vitro (Mitchelhill et al. 1994; Woods

et al. 1994) but, more recently, it turned out that mutations

in Snf4, at sites which in AMPK contribute to AMP

binding and regulation, do relieve glucose inhibition of

Snf1 (Momcilovic et al. 2008).

In a second model, the role of sensor and transducer of

the glucose signal is attributed to hexokinase 2 (Hxk2),

which acts in the first step of glycolysis phosphorylating

glucose on C6. Two other hexokinases, Hxk1 and Glk1,

can also catalyse this reaction, but Hxk2 is believed to be

the crucial hexokinase during growth on glucose, since

Hxk1 and Glk1 are themselves subject to glucose

repression (De Winde et al. 1996). It was reported that in a

hxk2D mutant, the glucose repression of several genes was

severely reduced (Zimmermann and Scheel 1977; Entian

1980; Entian and Zimmermann 1980), the interaction

between Snf1 and Snf4 was increased (Jiang and Carlson

1996; Sanz et al. 2000) and that Snf1 still phosphorylated

Mig1 in the presence of glucose (Treitel et al. 1998;

Ahuatzi et al. 2007). Early reports suggested that the role of

Hxk2 in glucose repression was limited to its metabolic

role (Ma et al. 1989; Rose et al. 1991). More recently,

however, mutants were isolated with a distinct effect on

catalytic activity and glucose signalling (Hohmann et al.

1999; Kraakman et al. 1999b; Mayordomo and Sanz 2001),

indicative for a more specific role of Hxk2 in glucose

repression. Since it was shown that overexpression of

REG1 rescued defects in glucose repression due to deletion

of HXK2 (Sanz et al. 2000), one hypothesis states that

Hxk2 exerts its regulatory role in glucose signalling via

stimulation of the Glc7–Reg1 phosphatase complex.

However, no direct interaction between Reg1 and Hxk2

could be detected (Sanz et al. 2000), and other findings

indicate that Hxk2 interferes further downstream with the

glucose repression pathway. A small portion of Hxk2 is

located within the nucleus and appears to interact with the

transcriptional repressor Mig1 (Herrero et al. 1998;

Randez-Gil et al. 1998; Ahuatzi et al. 2004). Therefore, the

main role of Hxk2 in glucose repression is possibly inhi-

bition of the interaction between Mig1 and Snf1, thereby

blocking the phosphorylation of Mig1 which would

otherwise relieve glucose repression.

The cAMP-PKA pathway

The cAMP-PKA pathway plays a major role in the control

of metabolism, stress resistance and proliferation, in par-

ticular in connection with the available carbon source. In

response to a sudden availability of rapidly fermentable

sugars, the pathway transiently induces the synthesis of

cAMP to boost the activity of the cAMP-dependent protein

kinase (PKA). In turn, PKA will affect several downstream

targets thereby allowing cells to make the necessary

adaptations for fermentative growth. These include the

upregulation of glycolysis, the stimulation of cell growth

and cell cycle progression, the downregulation of stress

resistance and gluconeogenesis, and the mobilization of the

reserve carbohydrate glycogen and the stress protectant

trehalose (Thevelein et al. 2000; Santangelo 2006; Tamaki

2007; Gancedo 2008).

PKA is a hetero-tetramer composed of two catalytic

subunits, redundantly encoded by TPK1, TPK2 and TPK3

and two regulatory subunits, encoded by BCY1 (Toda et al.

1987a, b). Binding of the secondary messenger cAMP to

the regulatory subunit induces the dissociation of the
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hetero-tetramer and activation of the catalytic subunits

(Kuret et al. 1988). PKA activity is critical for yeast since

at least one of the three catalytic subunits is necessary for

viability (Toda et al. 1987b). This implies as well that there

is probably a large overlap in the functions of Tpk1-3,

which is further consistent with the high level of protein

sequence similarity between the different catalytic subunits

(Toda et al. 1987b). Nevertheless, there are several

examples of separate, specific functions for the different

subunits, such as the induction of pseudohyphal growth, the

expression control of genes involved in iron uptake or

branched amino acid biosynthesis, or the regulation of

mitochondrial enzymes (Robertson and Fink 1998; Pan and

Heitman 1999; Robertson et al. 2000; Zhu et al. 2000;

Singh et al. 2004; Chevtzoff et al. 2005; Ptacek et al. 2005).

Given their central and essential role, the activity of the

catalytic subunits is tightly regulated. This is best exem-

plified by the observation that cells lacking the regulatory

subunit Bcy1 display a pleiotropic ‘sick’ phenotype due to

hyperactivation of the Tpk subunits, which includes the

inability to grow on carbon sources other than glucose, an

abnormally high heat shock sensitivity, the lack of a proper

G1-arrest during nutrient starvation and defects in DNA

replication and sporulation (Matsumoto et al. 1983; Toda

et al. 1987a).

Regulation of the cAMP-PKA pathway

The cAMP-PKA pathway is under positive control of an

intracellular glucose sensing system as well as an extra-

cellular glucose detection system (Fig. 3). The intracellular

glucose-sensing system requires the uptake and phosphor-

ylation of glucose, but no further metabolism of the sugar

(Beullens et al. 1988; Rolland et al. 2000). In S. cerevisiae,

there are three glucose phosphorylating enzymes (Hxk1,

Hxk2 and Glk1) and any of these proteins can fulfil this

phosphorylation requirement to activate the cAMP-PKA

pathway. It is generally believed that the intracellular

glucose phosphorylation signal is further transduced to the

cAMP-PKA pathway via the Ras proteins, Ras1 and Ras2,

which belong to the group of small G proteins. The GTP-

bound, active Ras proteins stimulate the activity of the

adenylate cyclase Cyr1 (also known as Cdc35), the enzyme

which catalyses the synthesis of cAMP from ATP (Cas-

person et al. 1983, 1985; Matsumoto et al. 1983, 1984;

Kataoka et al. 1985; Toda et al. 1985; Field et al. 1988).

The GDP/GTP exchange on the Ras proteins is controlled

by the guanine nucleotide exchange factors (GEF) Cdc25

and Sdc25 (Broek et al. 1987; Camonis and Jacquet 1988;

Jones et al. 1991; Camus et al. 1994). The Ira proteins, Ira1

and Ira2, accelerate Ras GTPase activity by acting as

GTPase activating proteins (GAP) and, as a result, they

keep Ras in the GDP-bound, inactive state (Tanaka et al.

1989, 1990a, b, 1991). Both Ras proteins are essential to

obtain a normal glucose-induced cAMP signal. Glucose

addition to glucose-starved cells triggers a transient

increase in the GTP loading of Ras2. This process was

shown to require glucose phosphorylation (Mbonyi et al.

1988; Colombo et al. 2004). The mechanism by which

glucose phosphorylation affects Ras-GTP loading remains

largely to be elucidated. It is known that Cdc25 is required

for the glucose-induced Ras-GTP increase and it was

suggested that the intracellular levels of GTP, which

quickly respond to nutrient availability, could be the met-

abolic signal that regulates Cdc25 activity in response to

glucose (Rudoni et al. 2001; Colombo et al. 2004;

Cazzaniga et al. 2008). On the other hand, it seems plau-

sible that the Ira proteins are inhibited by the glucose

signal, since an ira1Dira2D double deletion mutant dis-

plays a severe increase in Ras-GTP levels and no further

increase upon glucose addition (Colombo et al. 2004).

Fig. 3 The cAMP-PKA pathway in S. cerevisiae. Addition of

glucose to glucose-starved, respiring cells triggers the rapid synthesis

of cAMP and, subsequently, the activation of PKA. Glucose-induced

cAMP synthesis requires two sensing systems: (i) extracellular

detection of glucose via the Gpr1–Gpa2 system and (ii) intracellular

detection of glucose, which requires uptake and phosphorylation of

the sugar. The intracellular sensing system most probably transduces

signals via the GEF protein Cdc25 and the Ras proteins. Activated

PKA mediates the fast transition from respiratory to fermentative

growth via the modulation of numerous downstream targets. Arrows
and bars represent positive and negative interactions, respectively.

Dashed lines represent putative or indirect interactions. See text for

further details
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Notably, the Ira proteins are activated by the kelch proteins

(see below) (Harashima et al. 2006) and appear to be

inhibited by Tfs1, a carboxypeptidase Y inhibitor, origi-

nally discovered as a dosage-dependent suppressor of a

cdc25 mutation (Robinson and Tatchell 1991; Bruun et al.

1998; Caesar and Blomberg 2004; Chautard et al. 2004).

Thus, these proteins are potential transducers of the glucose

signal to the Ira proteins.

Extracellular glucose detection occurs through a G

protein-coupled receptor (GPCR) system, composed of

Gpr1 and Gpa2 (Kraakman et al. 1999a). Gpr1 belongs to

the G protein-coupled seven-transmembrane receptor

(GPCR) superfamily (Yun et al. 1997; Xue et al. 1998)

and Gpa2 is a member of the heterotrimeric G protein a
subunit (Ga) protein family (Nakafuku et al. 1988).

Addition of glucose to derepressed cells activates Gpr1,

which in turn stimulates the exchange of GDP for GTP on

Gpa2 (Kraakman et al. 1999a). The Gpr1–Gpa2 couple

displays a rather low affinity for glucose, with a half-

maximum response (EC50) of 20–75 mM, depending on

the genetic background tested and the experimental setup

(Rolland et al. 2000; Lemaire et al. 2004). This probably

ensures that the cAMP-PKA pathway is only fully acti-

vated when glucose levels are high enough to switch

easily from respiration to fermentation. GTP-bound Gpa2

activates the cAMP-PKA pathway and this is most

probably through stimulation of adenylate cyclase

(Nakafuku et al. 1988; Kubler et al. 1997; Lorenz and

Heitman 1997; Colombo et al. 1998; Rolland et al. 2000;

Peeters et al. 2006). Gpa2 interacts with Rgs2, a member

of the family of regulators of G protein signalling (RGS),

that negatively regulates the Gpa2-GTP signal by stimu-

lating the intrinsic GTPase activity of Gpa2 (Versele et al.

1999). It is unclear whether the Ga protein Gpa2 also

associates with canonical Gb and Gc subunits. A recent

report suggests that Asc1 functions as the Gb subunit for

Gpa2 (Zeller et al. 2007). Asc1 has the typical 7-WD

domain structure of a canonical Gb protein, interacts

directly with Gpa2 in a guanine nucleotide-dependent

manner and inhibits Gpa2 guanine nucleotide exchange

activity. In addition, Asc1 binds to adenylate cyclase and

diminishes the glucose-induced production of cAMP.

Another hypothesis states that the kelch-repeat proteins

Krh1/Gpb2 and Krh2/Gpb1 serve as Gb subunit and Gpg1

as Gc for Gpa2 (Harashima and Heitman 2002; Batlle

et al. 2003). The kelch-repeat proteins interact with Gpa2

and contain seven kelch repeats that mimic the b pro-

peller that is formed by seven WD-40 repeats in canonical

Gb subunits. Phenotypic analysis of gpb1D gpb2D double

deletion mutants showed that the kelch-repeat proteins act

as negative regulators of PKA signalling (Harashima and

Heitman 2002; Batlle et al. 2003; Lu and Hirsch 2005).

Several mechanisms have been proposed to explain their

effect. One report suggests that the kelch-repeat proteins

inhibit Gpr1–Gpa2 coupling (Harashima and Heitman

2005). Alternatively, the kelch-repeat proteins were

reported to stimulate the interaction between the catalytic

and the regulatory subunits of PKA (Peeters et al. 2006).

Activated, GTP-bound Gpa2 would relieve this inhibition

of PKA by inhibiting the kelch-proteins, thereby bypass-

ing adenylate cyclase to regulate PKA. Finally, it has also

been found that the kelch-repeat proteins bind to a con-

served C-terminal domain of the Ira proteins and stabilize

them (Harashima et al. 2006). As this would decrease

Ras-GTP levels, it means that the Gpr1–Gpa2 couple

could possibly modulate the activity of adenylate cyclase

and PKA via the Ras proteins. It should be stressed that

intracellular sensing of glucose is a prerequisite for the

extracellular glucose detection system to further activate

cAMP synthesis (Rolland et al. 2000), but how the signals

of both sensing systems are exactly integrated to control

adenylate cyclase activity remains to be resolved.

A strong negative feedback mechanism ensures that the

glucose-induced increase in cAMP levels and PKA activity

are transient and can only be triggered in glucose-dere-

pressed cells. PKA itself is involved in this mechanism

since basal cAMP levels are dramatically increased in

strains with reduced activity of the kinase (Nikawa et al.

1987a; Mbonyi et al. 1990). cAMP is hydrolyzed by the

low- and high-affinity phosphodiesterases, respectively,

encoded by PDE1 and PDE2 (Sass et al. 1986; Nikawa

et al. 1987b; Wilson and Tatchell 1988). The high-affinity

phosphodiesterase Pde2 appears to control basal cAMP

levels, which is important to prevent undesirable PKA

activity during stationary phase (Park et al. 2005). The low-

affinity phosphodiesterase Pde1, however, was shown to be

specifically involved in the feedback inhibition of glucose-

induced cAMP signalling and is probably activated by

PKA itself (Casamayor et al. 1999). The Ras proteins are

also involved in the negative feedback control of the

activated cAMP-PKA pathway. The glucose-induced

increase of Ras-GTP loading is only transient and in a

PKA-attenuated strain a severe increase in basal Ras-GTP

levels was observed (Colombo et al. 2004). Whether the

Ras proteins or rather one of their regulators are the targets

of the feedback-inhibition mechanism is not clear. Another

target for feedback regulation could be adenylate cyclase

itself (Nikawa et al. 1987a). Furthermore, feedback regu-

lation may involve other carbon source-dependent path-

ways as well, for instance the main glucose repression

pathway, since no glucose-induced cAMP increase was

observed in a snf1D mutant (Arguelles et al. 1990). Finally,

it is important to note that PKA activity is further fine-

tuned by modulation of its subcellular localization, phos-

phorylation state and abundance (Werner-Washburne et al.

1991; Griffioen et al. 2000, 2001; Schmelzle et al. 2004;
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Portela and Moreno 2006). However, compared to cAMP-

mediated control, this regulation of PKA appears to be less

important for short-term signalling events.

Targets of cAMP-activated PKA

cAMP-activated PKA has a major impact on gene

expression, which is well-illustrated by the observation that

90% of the transcriptional changes upon glucose addition

to glucose-starved cells could be mimicked by artificial

activation of PKA (Wang et al. 2004). Accordingly, several

of the known PKA targets affect gene transcript levels,

either directly or indirectly (Fig. 3). Two of those are the

transcription factors Msn2 and Msn4, which mediate the

transcription of the so-called stress response element

(STRE)-controlled genes (Estruch and Carlson 1993;

Martinez-Pastor et al. 1996; Schmitt and McEntee 1996).

STRE genes are involved in a wide variety of processes,

including protection against diverse types of stress such as

heat, oxidative and osmotic stress, carbohydrate metabo-

lism and growth regulation (Mai and Breeden 1997;

Moskvina et al. 1998; Smith et al. 1998; Gasch et al. 2000).

Msn2 and Msn4 are inhibited by PKA and, notably, dele-

tion of both MSN2 and MSN4 rescues the lethality of a tpk

null strain (Boy-Marcotte et al. 1998; Smith et al. 1998).

During growth on glucose, Msn2 and Msn4 are phos-

phorylated and reside in the cytosol. Upon glucose

exhaustion, they are hyperphosphorylated and translocated

to the nucleus, where they induce expression of the STRE-

controlled genes. PKA inhibits nuclear import of Msn2/4,

probably through direct phosphorylation of their nuclear

localization signal (Gorner et al. 1998, 2002; Garreau et al.

2000). A second mechanism for PKA-mediated regulation

of STRE-controlled gene expression involves the Ccr4-Not

complex, a global transcriptional regulator that affects

genes positively and negatively. It was proposed that this

complex contributes to the downregulation of Msn2/4-

driven transcription and this through direct interaction with

Tpk2 and by modulation of the phosphorylation status of

Msn2 via the Bud14-Glc7 protein phosphatase (Lenssen

et al. 2002, 2005). Moreover, PKA seems to additionally

inhibit the function of Msn2 and Msn4 via the protein

kinases Yak1 and Rim15. Both kinases are under negative

control of PKA, supposedly by direct phosphorylation, and

deletion of YAK1 or RIM15, like deletion of both MSN2

and MSN4, can suppress the lethality caused by loss of

PKA activity (Garrett and Broach 1989; Garrett et al. 1991;

Reinders et al. 1998; Griffioen et al. 2001; Moriya et al.

2001; Zappacosta et al. 2002). A recent report suggests that

Yak1 phosphorylates and thereby activates Msn2 through a

still unknown mechanism, which apparently does not

implicate the control of Msn2 subcellular localization (Lee

et al. 2008a). Since the YAK1 gene itself is induced by

Msn2/4, this would generate a positive feedback loop

(Smith et al. 1998). In the same study, Yak1 was also found

to stimulate the activity of Hsf1, another transcriptional

activator of stress response genes that was recently shown

to be under negative control of PKA (Hahn et al. 2004;

Ferguson et al. 2005; Lee et al. 2008a). Rim15 was initially

identified as an activator of meiotic gene expression (Vidan

and Mitchell 1997). Later, this protein kinase was shown to

be essential for the accumulation of both the reserve car-

bohydrate glycogen and the stress protectant trehalose, the

induction of several stress response genes, the induction of

thermotolerance and proper G1-arrest upon nutrient star-

vation (Reinders et al. 1998; Cameroni et al. 2004; Zhang

et al. 2009). Genome-wide expression analyses confirmed

that the Rim15-controlled expression program following

glucose limitation at the diauxic shift is almost entirely

mediated by the three transcription factors Msn2, Msn4 and

Gis1 (Cameroni et al. 2004; Roosen et al. 2005). The latter

is a transcription factor that induces expression of stress

response genes containing so-called post diauxic shift

(PDS) elements in their promoter regions, some of which

are required during respiratory growth (Pedruzzi et al.

2000; Cameroni et al. 2004; Roosen et al. 2005; Zhang

et al. 2009). Together, the above-described data indicate

that PKA exerts a dual control on gene expression, first by

regulation of its downstream protein kinases Rim15 and

Yak1, and second by direct regulation of their presumed

effectors, i.e. the transcription factors Msn2, Msn4, and

likely also Gis1.

PKA activates the transcription of ribosomal protein

genes as well (Herruer et al. 1987; Kraakman et al. 1993;

Griffioen et al. 1994). It was reported that PKA promotes

nuclear localization and binding of the transcriptional

activator Sfp1 to the promoters of ribosomal protein genes

(Marion et al. 2004). In addition, PKA appears to induce

transcription of ribosomal protein genes also by inhibition

of Yak1, which in turn is required to promote the activity

of the transcriptional corepressor Crf1 (Martin et al. 2004).

As will be discussed in more detail below, PKA further

stimulates protein synthesis indirectly by inhibiting nuclear

import of Maf1, which represses 5S rRNA and tRNAs

transcription by RNA Polymerase III (Moir et al. 2006;

Willis and Moir 2007).

In addition to the control of gene expression and protein

synthesis, PKA directly modulates the activity of metabolic

enzymes. PKA-dependent phosphorylation inhibits the

activity of fructose-1,6-bisphosphatase (Fbp1) and stimu-

lates the activity of 6-phosphofructo-2-kinase (Pfk2) and of

both isoforms of pyruvate kinase (Pyk1 and Pyk2)

(Gancedo et al. 1983; Rittenhouse et al. 1987; Cytrynska

et al. 2001; Vaseghi et al. 2001; Portela et al. 2002; Dihazi

et al. 2003). Together, these modifications result in the

stimulation of glycolysis and the inhibition of
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gluconeogenesis when glucose is added to glucose-starved

cells. In vitro phosphorylation by PKA also modulates the

activity of enzymes involved in the metabolism of treha-

lose (Tps1 and Nth1) and glycogen (Gsy2 and Gph1), but it

remains to be established whether these enzymes are direct

in vivo substrates of PKA (Uno et al. 1983; Wingender-

Drissen and Becker 1983; Panek et al. 1987; Hardy and

Roach 1993).

Finally, PKA is a known inhibitor of autophagy, a

degradative process that recycles non-essential proteins

and organelles during periods of nutrient starvation (Bud-

ovskaya et al. 2004; Schmelzle et al. 2004; Yorimitsu and

Klionsky 2005). The key players involved in autophagy are

the Atg proteins and three of these, i.e. Atg1, Atg13 and

Atg18, contain a PKA consensus phosphorylation site. At

least for Atg1, this site appears to be functional since data

confirmed that PKA phosphorylation negatively controls

the recruitment of Atg1 to the sites of autophagosome

formation upon nutrient limitation (Budovskaya et al.

2005).

The TOR pathway

The Target Of Rapamycin (TOR), a highly conserved Ser/

Thr protein kinase, is the central component of a major

regulatory signalling network that controls cell growth in

diverse eukaryotic organisms, ranging from yeast to man.

The TOR proteins were first identified in yeast as the tar-

gets of the antifungal and immunosuppressive agent rapa-

mycin, hence their name (Heitman et al. 1991). In contrast

to most eukaryotes, yeast contains two TOR homologues,

Tor1 and Tor2. Two functionally and structurally distinct

Fig. 4 The TORC1 pathway in S. cerevisiae. Nutrients activate

TORC1, resulting in the stimulation of protein synthesis and the

inhibition of stress response genes, autophagy and several pathways

that allow growth on poor nitrogen sources. A major part of these

processes is regulated by the rapamycin-sensitive TORC1 complex

either via the Tap42-Sit4/PPA2c or the recently identified Sch9

branches. The activity of Sch9 is additionally regulated by Pkh1 and

Pkh2. Note that Sch9 functions both in the cytoplasm and the nucleus.

See text for further details. Arrows and bars represent positive and

negative interactions, respectively. Dashed lines represent putative or

indirect interactions
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TOR multiprotein complexes exist: TOR complex 1

(TORC1) and TOR complex 2 (TORC2) (Zheng et al.

1995; Loewith et al. 2002); however, only TORC1 is

specifically inhibited by rapamycin (Fig. 4). The addition

of rapamycin induces dramatic phenotypic changes such as

cell cycle arrest and entry into G0, general downregulation

of protein synthesis, accumulation of the reserve carbo-

hydrate glycogen and the stress protectant trehalose,

upregulation of stress response genes, autophagy and

alterations in nitrogen and carbon metabolism (De Virgilio

and Loewith 2006a, b; Rohde et al. 2008). Hence, it

appears that TORC1 signalling controls the temporal

aspects of cell growth in response to the quality of the

available nitrogen and carbon sources. On the other hand,

TORC2, which is insensitive to rapamycin and is less well-

characterized in comparison to TORC1, is thought to reg-

ulate the spatial aspects of growth, such as the control of

actin polarization (De Virgilio and Loewith 2006a, b;

Rohde et al. 2008). Here, we will focus on TORC1, as only

this complex modulates nutrient-induced signalling in

response to mainly nitrogen sources and to some extent

glucose.

Structural aspects and localization of the TOR protein

complexes

TOR1 and TOR2 encode two large (*280 kDa) and

homologous (67% identical) proteins that belong to a

family of phosphatidylinositol kinase-related kinases

(PIKKs) (Cafferkey et al. 1993; Kunz et al. 1993; Helliwell

et al. 1994; Keith and Schreiber 1995). Despite their

resemblance to lipid kinases, they are thought to function

solely as Ser/Thr protein kinases. Both Tor1 as well as

Tor2 can be found in the multiprotein TORC1 together

with Lst8, Kog1 and Tco89. A separate pool of Tor2 also

associates with Lst8, Avo1, Avo2, Avo3, Bit61 and Bit2 to

form TORC2 (Loewith et al. 2002; Chen and Kaiser 2003;

Wedaman et al. 2003; Reinke et al. 2004; Araki et al. 2005;

Fadri et al. 2005). The precise function of these TOR-

interacting proteins is not known yet. They might play a

role in the binding of the TOR complexes to their sub-

strates, be the receivers of upstream signals and/or deter-

mine the localization of the complexes. The TOR

complexes are likely dimeric built on a TOR–TOR dimer

(Wullschleger et al. 2005). Only TORC1 can bind

FKBP12-rapamycin while in TORC2, the Tor2 FKBP12-

rapamycin binding domain is probably not exposed for

binding (Loewith et al. 2002), explaining why only TORC1

signalling is sensitive to rapamycin treatment. Interest-

ingly, the constitution of TORC1 appears to be unaffected

by rapamycin, implying that rapamycin does not inhibit

TORC1 signalling by interfering with TORC1 stability

(Loewith et al. 2002). Both TOR complexes are essential

for viability, since deletion of TOR2 (inactivation of

TORC2) or deletion of both TOR1 and TOR2, or rapa-

mycin treatment (inactivation of TORC1) are lethal to

yeast (Heitman et al. 1991; Kunz et al. 1993). Deletion of

TOR1 alone, however, is not lethal, indicating that Tor1

and Tor2 have a redundant role in TORC1 signalling.

Several studies investigated the localization of TORC1

and TORC2. Various different localization patterns were

observed, which is possibly a reflection of the fact that

TOR signalling controls a multitude of processes. In gen-

eral, the TOR complexes were found to associate with

membranes ranging from the plasma membrane to the

vacuolar membrane and internal membranes of the protein

secretory pathway (Cardenas and Heitman 1995; Kunz

et al. 2000; Wedaman et al. 2003; Aronova et al. 2007;

Sturgill et al. 2008; Berchtold and Walther 2009). TORC2

appears to be predominantly localized in discrete dots at

the plasma membrane (Cardenas and Heitman 1995; Kunz

et al. 2000; Sturgill et al. 2008), while TORC1 is mainly

found at the vacuolar membrane, which is intriguing

knowing that the vacuole is a reservoir of nutrients and that

TORC1 signalling is believed to be regulated by nutrients

(Cardenas and Heitman 1995; Aronova et al. 2007; Sturgill

et al. 2008). According to a recent study, TORC1 is also

targeted to the nucleus where it induces 35S rRNA syn-

thesis under favourable growth conditions (Li et al. 2006).

Rapamycin-sensitive signalling via TORC1

Rapamycin has proven to be a good drug for yeast

researchers to study TORC1 signalling. Thanks to the fact

that it rapidly and specifically inhibits TORC1, numerous

proteins involved in a wide range of processes could be

identified whose activity is modified by TORC1 activity.

Especially, the transcriptional regulation exerted by

TORC1 is well-described and many transcription factors

were found to be under control of TORC1 signalling

(Fig. 4).

The precise mechanism how TORC1 regulates its

downstream effectors are often not well-understood. As

will be discussed in the section below, several TORC1-

mediated processes involve the protein kinase Sch9 (Urban

et al. 2007). Others appear to be regulated via the PP2A

and the PP2A-related protein phosphatases. These phos-

phatases consist of heteromeric protein complexes (Duvel

and Broach 2004). The PP2A holoenzyme contains one of

the two redundant catalytic subunits (PP2Ac), Pph21,

Pph22 (Sneddon et al. 1990; Ronne et al. 1991), a scaf-

folding subunit, Tpd3 (van Zyl et al. 1992), and one of the

two regulatory subunits, Cdc55 or Rts1 (Healy et al. 1991;

Zhao et al. 1997). The PP2A-related phosphatase is mainly

found as a complex between the catalytic subunit, Sit4

(Arndt et al. 1989), and one of the four regulatory subunits,
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Sap4, Sap155, Sap185 and Sap190 (Luke et al. 1996).

TORC1 controls the activity of these phosphatases via

Tap42. When Tap42 is phosphorylated by TORC1, it will

compete for binding the catalytic subunits of the phos-

phatases leading to the exclusion of other subunits of the

phosphatase holoenzymes (Di Como and Arndt 1996; Jiang

and Broach 1999). Thereby, TORC1 stimulates the for-

mation of a Tap42-associated phosphatase complex that

further includes either one of the regulatory proteins Rrd1

or Rrd2, both of which are known to confer phosphotyrosyl

phosphatase activity to the catalytic phosphatase subunits

in vitro (Zabrocki et al. 2002; Zheng and Jiang 2005).

Tap42 as well as Rrd1 and Rrd2 may redirect the substrate

specificity of the catalytic phosphatase subunits, and as

such, it is not surprising that the proteins have been

attributed both inhibitory as well as activatory roles,

dependent on the substrate being studied (Van Hoof et al.

2001; Cherkasova and Hinnebusch 2003; Duvel et al. 2003;

Duvel and Broach 2004). In actively growing cells, the

Tap42-associated phosphatase complexes reside mainly at

membranes where they associate with TORC1. Rapamycin

treatment or nitrogen starvation abrogates the TORC1

association and releases the Tap42-associated phosphatase

complex into the cytosol (Yan et al. 2006). Once cyto-

plasmic, this complex then slowly dissociates, presumably

concomitant with the dephosphorylation of Tap42 (Zheng

and Jiang 2005; Yan et al. 2006). Several studies revealed

an important role for yet another player in TORC1-

dependent regulation of PP2Ac and Sit4, i.e. Tip41. This

protein was initially identified as an inhibitor that could

specifically interact with dephosphorylated Tap42 (Jacinto

et al. 2001). However, more recent data suggest that both

Tip41 and Tap42 cooperate in determining the substrate

specificity of PP2Ac and Sit4, and that both proteins may

fulfil essentially a similar function in TORC1 signalling

(Duvel and Broach 2004; Santhanam et al. 2004; Kuepfer

et al. 2007).

One of the first described examples where TORC1 sig-

nalling involves the regulation of PP2A and the PP2A-like

phosphatase Sit4 is the control of nitrogen metabolism.

Yeast cells adapt their metabolism to the available nitrogen

sources via the nitrogen catabolite repression pathway

(NCR) also known as the nitrogen discrimination pathway

(NDP) (Magasanik and Kaiser 2002). This pathway ensures

that genes encoding proteins required for the usage of poor

nitrogen sources are repressed when rich nitrogen sources,

such as glutamine, are present in sufficient quantities. Four

GATA family zinc-finger transcription factors are involved

in the transcriptional control exerted by the NDP: two

activators, Gln3 and Gat1, and two repressors, Dal80 and

Gzf3 (Minehart and Magasanik 1991; Coffman et al. 1995,

1996, 1997; Cooper 2002). TORC1 inhibits transcription of

NDP genes by controlling Gln3 and Gat1 function (Beck

et al. 1999; Cardenas et al. 1999; Hardwick et al. 1999;

Shamji et al. 2000). Normally, during growth on rich

nitrogen sources, Gln3 is phosphorylated and sequestered

in the cytoplasm through its binding with the cytoplasmic

anchor protein Ure2. Rapamycin treatment, however, rap-

idly triggers, in a Sit4-dependent manner, the dephospho-

rylation of Gln3, dissociation from Ure2 and entry into the

nucleus, where Gln3 can exert its transcriptional activator

function on NDP genes (Beck et al. 1999). Thus, it appears

that TORC1 through inhibition of the Tap42-Sit4 phos-

phatase complex promotes Gln3 phosphorylation, which

inhibits Gln3 activity by stimulating its association with

Ure2. Nevertheless, recent results indicate that PP2A

phosphatase activity is also necessary for Gln3 nuclear

import upon rapamycin treatment, although the mechanis-

tic details remain elusive (Tate et al. 2009). Additionally,

TORC1 promotes via an unknown mechanism the phos-

phorylation of Ure2 and this might further modulate the

interaction between Gln3–Ure2 (Cardenas et al. 1999;

Hardwick et al. 1999). Rapamycin treatment also triggers

nuclear import of Gat1 (Beck et al. 1999). How TORC1

regulates this process is unclear, yet it appears to be dif-

ferent from TORC1-dependent Gln3 control and does not

involve Ure2 or Sit4 (Kuruvilla et al. 2001; Crespo et al.

2002; Georis et al. 2008).

TORC1 further negatively controls the general amino

acid control (GAAC) pathway (Hinnebusch 2005). The

central component of this pathway is Gcn4, a transcription

factor important for activating transcription of genes nee-

ded for amino acid biosynthesis in response to amino acid

starvation (Natarajan et al. 2001). The pathway is induced

by uncharged tRNAs, which presumably activate the

kinase Gcn2. In turn, Gcn2 phosphorylates the a subunit of

eIF2 and although this results in a reduction of the general

translation initiation, it specifically stimulates the transla-

tion of GCN4 mRNA (Dever et al. 1992). TORC1 inhibits

Gcn2 activity by promoting its phosphorylation at Ser577.

This occurs indirectly and involves the inhibition of the

PP2A-like phosphatase Sit4 via Tap42. As such, TORC1

enhances translation initiation and antagonizes GCN4

mRNA translation (Valenzuela et al. 2001; Cherkasova and

Hinnebusch 2003; Kubota et al. 2003; Rohde et al. 2004).

Note that GCN4 is also a target of the NDP (Godard et al.

2007), suggesting that TORC1, via inhibition of NDP gene

expression, also inhibits GCN4 transcription.

A third pathway that is involved in nitrogen metabolism

and that is subject to TORC1 control is the retrograde

response pathway (RTG). Apart from having other func-

tions, this pathway induces the expression of genes whose

products are required for the biosynthesis of a-ketoglutar-

ate as precursor for glutamate synthesis in cells grown on

poor nitrogen sources as well as in respiration-deficient

cells (Liu and Butow 2006). Expression of these genes

10 Curr Genet (2010) 56:1–32

123



requires the transcriptional activators Rtg1 and Rtg3.

TORC1 controls the cytoplasmic sequestration of these

factors through phosphorylation of Mks1, which thereby

forms a complex with the 14-3-3 proteins Bmh1/2 to pro-

vide the cytoplasmic anchor for Rtg1 and Rtg3. Rapamycin

treatment induces dephosphorylation of Mks1 and causes

disassembly of the complex. This directs Mks1 to bind to

the positive regulator of the pathway, i.e. Rtg2, thereby

relieving the cytoplasmic sequestration and promoting

nuclear translocation of Rtg1 and Rtg3 and the induction of

the target genes of RTG pathway (Komeili et al. 2000;

Dilova et al. 2002, 2004; Tate et al. 2002; Liu et al. 2003).

Genome-wide expression analysis revealed that Tap42 is

probably also involved in this regulation mechanism

(Duvel et al. 2003).

Finally, TORC1 also appears to control the turnover of

several amino acid permeases. Depending on the quality

and quantity of the nitrogen sources in the medium, yeast

cells activate a different set of amino acid permeases.

Under nutrient rich conditions, the so-called constitutive

permeases, such as the high-affinity tryptophan permease

Tat2, are targeted to the plasma membrane, whereas the

nitrogen-responsive permeases, such as the general amino

acid permease Gap1, are sorted to the vacuole for degra-

dation (Roberg et al. 1997; Beck et al. 1999). During

periods of nitrogen limitation, opposite sorting occurs and

Gap1 is allowed to reach the plasma membrane, while Tat2

is endocytosed and delivered to the vacuole (Roberg et al.

1997; Beck et al. 1999). The protein kinase Npr1 plays a

major role in the sorting of these two classes of permeases.

Npr1 is required for stabilization of Gap1 at the plasma

membrane and induces the degradation of Tat2, possibly by

regulating their ubiquitination (Schmidt et al. 1998;

Springael and Andre 1998; De Craene et al. 2001;

Helliwell et al. 2001; Soetens et al. 2001; Springael et al.

2002). TORC1 activity, through control of the Tap42–Sit4

phosphatase complex, promotes the phosphorylation of

Npr1 (Schmidt et al. 1998; Jacinto et al. 2001; Gander et al.

2008). Presumably, this phosphorylation inhibits Npr1

which would promote Tat2 stabilization and Gap1 degra-

dation. Accordingly, it was found that rapamycin induces

Tat2 targeting to the vacuole and that this process depends

on Npr1 (Schmidt et al. 1998; Beck et al. 1999). For Gap1,

it was initially reported that rapamycin-induced inhibition

of TORC1 did not affect its sorting (Chen and Kaiser

2002). More recently, however, it was shown that mutants

affected in Lst8 display vacuolar targeting of Gap1 under

conditions where the permease should normally be sorted

to the plasma membrane. Lst8 is a component of TORC1

and TORC2 and, consistently, the impairment of TOR

signalling by treatment with low, sublethal doses of rapa-

mycin triggers a similar missorting of Gap1. As both

mutation of Lst8 and rapamycin-induced impairment of

TOR signalling causes a significant increase in intracellular

amino acid pools, it was suggested that this increase could

act as signal that directs the vacuolar sorting of Gap1 (Chen

and Kaiser 2003).

Apart from its controlling function on nitrogen metab-

olism, TORC1 has a major regulatory role in protein syn-

thesis as it promotes expression of the rRNA and the

ribosomal proteins (RP) genes as well as of the so-called

ribosome biogenesis (Ribi) regulon (Jorgensen et al. 2004).

This regulon contains *236 genes encoding for proteins

that are also needed for an efficient functioning of the

translation apparatus, including translation factors, rRNA

and RP modifying and processing enzymes, tRNA syn-

thetases and subunits of RNA polymerases I and III. 35S

rRNA, the precursor of 5.8S, 18S and 25S rRNA, is tran-

scribed by RNA polymerase I (Planta 1997). TORC1

positively affects the interaction between Rrn3 and RNA

polymerase I, which is necessary for proper recruitment of

the polymerase to the 35S rDNA promoter (Claypool et al.

2004). However, recent data suggest that TORC1 promotes

recruitment of the RNA polymerase I to the rDNA locus in

a Rrn3-independent way, via a signalling route that

requires the TORC1-effector protein kinase Sch9 (see

below) (Huber et al. 2009). Tor1 itself binds to the 35S and

5S rDNA chromatin under favourable nutrient conditions

and this seems to be essential for the synthesis of 35S and

5S rRNA via, respectively, RNA polymerase I and III (Li

et al. 2006). In addition, the Tor1 association with 5S

rDNA chromatin is also required for TORC1 to stimulate

the expression of tRNAs by RNA polymerase III (Wei

et al. 2009). This regulation of RNA polymerase III

expression involves, at least in part, the inhibition of Maf1,

a repressor of RNA polymerase III transcription that is also

inhibited by PKA (Moir et al. 2006; Oficjalska-Pham et al.

2006; Roberts et al. 2006; Wei et al. 2009). Apparently, 5S

rDNA-associated TORC1 phosphorylates Maf1, thereby

inhibiting the nucleoplasm-to-nucleolus translocation of

Maf1 and the concomitant binding of Maf1 with RNA

polymerase III-transcribed genes (Wei et al. 2009). Inter-

estingly, most recent data suggest that TORC1 mediates

phosphorylation of Maf1 indirectly via Sch9 (Huber et al.

2009).

Concerning the regulation of RP gene transcription by

RNA polymerase II, it was found that TORC1 promotes

complex formation between Fhl1, a forkhead-like tran-

scription factor that binds to the promoter of RP genes, and

its co-activator Ifh1 (Lee et al. 2002; Martin et al. 2004;

Schawalder et al. 2004; Wade et al. 2004; Rudra et al.

2005). This Fhl1–Ifh1 complex then promotes the expres-

sion of RP genes. Depending on the genetic background,

Fhl1 can also act alone or in complex with the corepressor

Crf1, but then it mediates repression of the RP genes

(Martin et al. 2004; Zhao et al. 2006). How TORC1 exactly
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interferes with Fhl1 complex formation and activity is

unclear. It was suggested that Yak1 phosphorylates Crf1 to

promote its nuclear entry and that TORC1, possibly via

PKA, inhibits Yak1 (Martin et al. 2004). When TORC1 is

active, Crf1 would then remain in the cytoplasm and the

Fhl1–Ifh1 complex could promote RP expression, whereas

under less favourable conditions, Yak1-activated Crf1

enters the nucleus and displaces Ifh1 from Fhl1 to repress

RP expression. Note, however, that it is generally believed

that TORC1 and PKA operate in parallel and therefore the

hypothesis that TORC1 activates the PKA pathway needs

further testing. Furthermore, the role of Crf1 as corepressor

of RP gene expression appears to depend on the genetic

background of the strains under study (Zhao et al. 2006)

and other mechanisms of TORC1-dependent control of the

Fhl1 complex have been suggested. One such mechanism

seems to involve the stress- and nutrient-sensitive tran-

scription factor Sfp1. TORC1 regulates, probably via direct

phosphorylation, the nucleocytoplasmic distribution and

the promoter binding of Sfp1. In exponentially growing

cells, Sfp1 is localized in the nucleus where it promotes

both RP as well as Ribi gene expression, but upon TORC1

inactivation Sfp1 translocates to the cytoplasm (Jorgensen

et al. 2004; Marion et al. 2004; Lempiainen et al. 2009).

Sfp1, in turn, appears to affect the localization of the Fhl1–

Ifh1 complex. In the absence of nutrients or Sfp1, both

Fhl1 and Ifh1 remain nuclear but relocalize to the nucleolar

regions, which occurs concomitant with reduced RP gene

transcription (Jorgensen et al. 2004). In the nucleolus, Fhl1

and Ifh1 were proposed to have additional functions, such

as repressing rRNA transcription, which would provide an

interesting link between rRNA and RP synthesis. Different

studies indicated that Sch9 should be involved in the reg-

ulation of RP and Ribi gene expression and it was proposed

that this protein kinase could be the effector allowing for

TORC1 control independent of Fhl1 and Sfp1 (Crauwels

et al. 1997a; Jorgensen et al. 2004; Roosen et al. 2005; see

also below). Another protein involved in TORC1-mediated

transcriptional control of ribosome biosynthesis is Hmo1.

This protein is a member of the HMG protein family that

encompasses architectural proteins that bind to DNA with

low sequence specificity. Hmo1 associates with RP gene

promoters and with the rDNA region and this association

requires TORC1 activity (Hall et al. 2006; Berger et al.

2007). By regulating Hmo1, TORC1 probably ensures that

rRNA and RP expression are well-coordinated.

TORC1 also regulates protein synthesis at the post-

transcriptional level. It was recently shown that TORC1

controls the nucleocytoplasmic shuttling of Dim2 and

Rrp12, two 40S ribosome synthesis factors that are

involved in ribosome assembly and the nucleocytoplasmic

translocation of pre-ribosomes (Vanrobays et al. 2008).

Furthermore, TORC1 was found to be essential for

translation initiation (Barbet et al. 1996). Based on the fact

that deletion of CDC33, encoding for the translation initi-

ation factor eIF4E, results in a similar phenotype as

observed when TORC1 is inactivated, it was proposed that

TORC1 might control translation initiation via eIF4E

(Barbet et al. 1996; Danaie et al. 1999). In addition,

TORC1 was shown to have a positive effect on the stability

of translation initiation factor eIF4G that binds to eIF4E

(Berset et al. 1998). A third translation initiation factor that

is regulated by TORC1 is eIF2. However, as mentioned

above, the regulation of eIF2 by TORC1 is indirect and

mediated through the kinase Gcn2, of which the phos-

phorylation status is controlled via the Tap42 effector

branch. Phosphorylated Gcn2 in turn prevents phosphory-

lation of the a subunit of eIF2 and thereby the inhibition of

translation initiation (Cherkasova and Hinnebusch 2003;

Kubota et al. 2003; Hinnebusch 2005).

Next, TORC1 exerts a major impact on the transcription

of stress response genes. Here, TORC1 has a dual control.

On the one hand, it prevents nuclear translocation of the

protein kinase Rim15, thereby ensuring that this kinase is

maintained inactive through PKA-mediated phosphoryla-

tion (Pedruzzi et al. 2003; Urban et al. 2007; Wanke et al.

2008). Since this control involves Sch9, it will be discussed

in more detail in the section below. On the other hand,

TORC1 inhibits the transcription of stress-responsive genes

via a Rim15-independent, but Tap42–PP2A-dependent

route, thereby promoting the phosphorylation and cyto-

plasmic retention of Msn2 (Beck and Hall 1999; Duvel

et al. 2003; Santhanam et al. 2004). It is important to note

that the latter is independent of the PKA-mediated phos-

phorylation of the Msn2/4 nuclear localization signal

(Gorner et al. 1998, 2002; Garreau et al. 2000; Santhanam

et al. 2004).

Finally, TORC1 is also a known negative regulator of

autophagy (Chang et al. 2009). TORC1 activity controls

the phosphorylation status of Atg13. When TORC1 is

active, Atg13 is hyperphosphorylated, whereas rapamycin

addition induces a rapid dephosphorylation of Atg13

(Kamada et al. 2000). The latter apparently stimulates the

affinity of Atg13 for Atg1 and promotes Atg1–Atg13

complex formation which is a requirement for autophagy

(Funakoshi et al. 1997; Kamada et al. 2000). It is possible

that PP2A is involved in TORC1-dependent regulation of

Atg13 phosphorylation, since it was recently shown that

autophagy is negatively regulated by the Tap42-PP2A

pathway (Yorimitsu et al. 2009).

Recently, a label-free quantitative phosphoproteomic

screen revealed more than 100 novel TORC1-dependent

phosphorylation events, which were only partially depen-

dent on the two known direct downstream effectors of

TORC1, i.e. Sch9 and Tap42. This suggests the existence

of additional but yet unidentified direct targets of TORC1
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(Huber et al. 2009). The authors described possible new

links between TORC1 and filamentous growth through the

Ksp1 protein kinase (Bharucha et al. 2008) and between

TORC1 and the DNA damage response through Pin4, a

protein involved in G2/M progression, and Rph1, a histone

demethylase (Kim et al. 2002; Pike et al. 2004). Further-

more, they described additional links between TORC1 and

ribosome biogenesis through regulation of Stb3, Dot6 and

Tod6, three transcriptional repressors of ribi gene expres-

sion (Liko et al. 2007; Badis et al. 2008; Zhu et al. 2009).

Rapamycin-insensitive signalling via TORC2

TORC2 signalling is less well-characterized than TORC1

signalling due to the absence of a rapamycin equivalent for

TORC2. The Cell Wall Integrity (CWI) pathway that reg-

ulates cell wall synthesis and actin polarization was the first

pathway that could be connected to TORC2 signalling

(Schmidt et al. 1996; Levin 2005). Overexpression of

components of the CWI pathway could restore viability

and actin polarization defects of mutants compromised in

their TORC2 function (Schmidt et al. 1996; Bickle et al.

1998; Helliwell et al. 1998). These results suggest that

TORC2 functions upstream or in parallel to the CWI

pathway to regulate actin polarization. Additionally, it was

found that the protein kinases, Ypk1 and Ypk2, and the PH

domain proteins, Slm1 and Slm2, which also play a role in

actin polarization, are downstream targets of TORC2 sig-

nalling (Audhya et al. 2004; Fadri et al. 2005; Kamada

et al. 2005). Interestingly, Ypk1/2 and Slm1/2 appear to be

upstream regulators of the CWI pathway and might,

therefore, provide a mechanistic link between TORC2 and

the CWI pathway (Schmelzle et al. 2002; Ho et al. 2008).

Since both Ypk1/2 and Slm1/2 were also shown to be

regulated by sphingolipids, these proteins also couple

TORC2 to sphingolipid metabolism and signalling

(Aronova et al. 2008).

How is TOR signalling regulated?

Rapamycin treatment, transfer of yeast cells from good- to

poor-quality carbon or nitrogen sources, or starvation for

carbon or nitrogen all elicit very similar responses indi-

cating that TORC1 is regulated by the abundance and/or

quality of the available carbon and nitrogen source. While

it is still largely unknown which metabolite(s) may regulate

TORC1, glutamine appears to play a particularly important

role in TORC1 activation (Crespo et al. 2002). Notably,

glutamine can be readily converted to a-ketoglutarate (for

use in the TCA cycle) or serve as a precursor for the bio-

synthesis of other amino acids, nucleotides and nitrogen

containing molecules (such as NAD?). It is, therefore, not

only a key intermediate in nitrogen metabolism, but also an

important indicator of the cell’s general nutrient status

(Magasanik and Kaiser 2002). In line with the idea that

glutamine acts upstream of TORC1, glutamine starvation

phenocopies the effects of TORC1 inactivation inasmuch

as it causes nuclear localization and activation of Gln3 and

Rtg1/Rtg3 (Crespo et al. 2002; Butow and Avadhani 2004).

Nevertheless, since other TORC1 readouts, such as for

instance the subcellular distribution of Msn2, remain

unaffected by glutamine starvation, TORC1 is likely to

respond to additional nutrients and to elicit nutrient-spe-

cific responses. Understanding of how nutrients (including

amino acids such as glutamine) are sensed and how this

information is transmitted to TORC1 still remains one of

the major challenges in the TORC1 field.

In this context, the vacuolar membrane-associated EGO

(exit from rapamycin-induced growth arrest) protein com-

plex (EGOC) (Dubouloz et al. 2005), which consists of

Ego1/Meh1/Gse2, Ego3/Nir1/Slm4/Gse1, Gtr1, and Gtr2,

has been proposed to function as a critical hub that directly

relays an amino acid signal to TORC1 (De Virgilio and

Loewith 2006a, b; Gao and Kaiser 2006; Piper 2006). This

initial idea has recently been bolstered by the finding that

the EGOC subunit Gtr1, which is homologous to mam-

malian Rag GTPases, directly interacts with and activates

TORC1 in an amino acid-sensitive and nucleotide-depen-

dent manner (Binda et al. 2009). Accordingly, expression

of a constitutively active (GTP-bound) Gtr1GTP, which

interacted strongly with TORC1, rendered TORC1 par-

tially resistant to leucine deprivation, while expression of a

growth inhibitory GDP-bound Gtr1GDP caused constitu-

tively low TORC1 activity. In line with this proposed

model in yeast, two complementary studies in Drosophila

and mammalian cells have also reported that the conserved

Rag GTPases act as upstream regulators of TORC1 and

play important roles in coupling amino acid-derived signals

to TORC1 (Kim et al. 2008; Sancak et al. 2008).

Interestingly, a genome-wide synthetic genetic interac-

tion screen revealed that tor1D cells were particularly sick,

or not viable, in the absence of individual subunits of either

of two protein complexes, namely the EGO complex and

the homotypic fusion and vacuole protein sorting (HOPS/

class C-Vps) complex (Zurita-Martinez et al. 2007). These

and additional genetic data indicated that the class C-Vps/

HOPS complex may, like EGOC, directly or indirectly

control TORC1 signalling in response to amino acids.

Notably, the HOPS complex is thought to facilitate the

transition from tethering to trans-SNARE pairing during

fusion at the vacuole in part by nucleotide exchange on the

GTPase Ypt7, which is exerted by the HOPS complex

subunit Vam6 (Wurmser et al. 2000). Intriguingly, recent

genetic and biochemical data indicate that Vam6 may in

fact control TORC1 function rather directly by regulating

the nucleotide-binding status of the EGOC subunit Gtr1
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(Binda et al. 2009). This suggests that Vam6 may actually

integrate amino acid signals to coordinate the control of

TORC1 activity and vacuolar fusion events. While the

discovery of the EGOC as an activator of TORC1 signal-

ling represents an important step in deciphering the

molecular events that signal nutrient availability to

TORC1, an exciting question that remains to be addressed

is how amino acid availability is sensed and communicated

to Vam6 and/or the EGOC.

In addition to the abundance and/or quality of nutrients,

TORC1 activity also appears to be sensitive to stress cues,

but the mechanisms by which these cues are sensed and

how this is communicated to TORC1 are presently

unknown (De Virgilio and Loewith 2006a). Finally, the

Golgi Ca2?/Mn2? ATPase Pmr1 has recently also been

implicated in TORC1 regulation (Devasahayam et al.

2006). Accordingly, loss of Pmr1 increased rapamycin

resistance, while addition of Mn2? to the growth medium

restored rapamycin sensitivity to pmr1D cells. Together

with genetic epistasis analyses that placed Pmr1 upstream

of TORC1, it was suggested that manganese within the

Golgi lumen might, via a yet unidentified mechanism,

inhibit TORC1 activity (Devasahayam et al. 2007).

The upstream signals that regulate TORC2 remain cur-

rently elusive, but may possibly include nutrients and/or

diverse stresses. Given the importance of cell polarization

during mitosis (Pruyne and Bretscher 2000a, b), an inter-

esting additional or alternative model is that the cell cycle

machinery may impinge on TORC2.

The protein kinase Sch9

As indicated above, the serine/threonine protein kinase

Sch9 plays a central role in nutrient-mediated signalling.

This kinase was originally identified through a screen

aiming to isolate multi-copy suppressors of the growth

defect at high temperatures of a cAMP-PKA signalling-

deficient cdc25ts strain (Toda et al. 1988). It was then also

shown that the typical phenotypes associated with the loss

of Sch9 activity, such as slow growth, reduced cell size and

small colony formation, can all be suppressed by overac-

tivation of the PKA pathway, an observation that was

subsequently confirmed in several studies (Toda et al.

1988; Hartley et al. 1994; Jorgensen et al. 2002). Later, it

was reported that the deletion of GPR1, GPA2 or RAS2,

which all encode proteins involved in the upstream acti-

vation of the cAMP-PKA pathway, results in a synthetic

growth defect when combined with the deletion of SCH9

(Kraakman et al. 1999b; Lorenz et al. 2000). Thus, there

appears to be an intimate relationship between Sch9

and PKA as both kinases seem to have overlapping func-

tions. Subsequently, Sch9 was reported to be essential for

the proper nutritional regulation of PKA-dependent

phenotypes in glucose-repressed cells, such as the activa-

tion of trehalase, the repression of stress response genes

and the induction of ribosomal protein genes (Crauwels

et al. 1997a). These findings led to the concept of the so-

called Fermentable Growth Medium (FGM) pathway that

is believed to ensure the maintenance of PKA-dependent

phenotypes of yeast cells growing on medium containing a

rapidly fermented sugar and all essential nutrients, after the

transient activation of the cAMP-PKA pathway that occurs

during lag phase when cells prepare themselves for fer-

mentative growth (Thevelein 1994; Crauwels et al. 1997a).

As the FGM pathway appeared to operate independent of

cAMP, it was postulated that Sch9 could control the

activity of PKA at the level of the free catalytic Tpk sub-

units (Thevelein 1994; Crauwels et al. 1997a). More

recently, however, it was found that PKA and Sch9 act in

parallel (Roosen et al. 2005). For instance, both kinases

have an additive effect for the expression of proteins

required for nucleotide metabolism but they exert opposite

effects on the expression on proteins involved in detoxifi-

cation or proteolysis (Roosen et al. 2005). In addition, they

independently determine the sensitivity of yeast cells for

the ATP-analogue 1NM-PP1 as illustrated by the obser-

vation that a mutant with combined analogue-sensitive

sch9as tpk1as tpk2as tpk3as alleles is more sensitive than the

single sch9as mutant or the tpk1as tpk2as tpk3as strain

(Yorimitsu et al. 2007; Huber et al. 2009; Lee et al. 2009).

Sch9 is homologous to the mammalian protein kinase B

(PKB/Akt). Alignment of Sch9 and PKB revealed 44%

identity and 68% similarity over 397 residues and showed

that the homology between Sch9 and PKB is most pro-

nounced at the catalytic domain and the C-terminus

(Geyskens et al. 2001). Furthermore, Sch9 and PKB are not

only structurally, but also functionally related since

expression of PKB rescues the slow growth and small

colony phenotype of a sch9D deletion mutant (Geyskens

et al. 2001). PKB was originally discovered as an oncogene

and is involved in the regulation of cell survival, cell cycle

progression and metabolism. The PKB kinase contains a

pleckstrin homology (PH) domain which binds to the lipid

second messenger phosphatidylinositol-3,4,5-trisphosphate

(PIP3). PIP3 is produced by phosphorylation of phospha-

tidylinositol-4,5-bisphosphate via the phosphoinositide-3-

kinase PI3K, which is activated by receptor tyrosine

kinases, such as the insulin receptor. After binding to PIP3

via its PH domain, PKB is localized at the plasma mem-

brane where it is phosphorylated, and thereby activated, by

the phosphoinositide-dependent kinase PDK1, which also

contains a PH domain, and by mammalian TORC2 (Fayard

et al. 2005; Corradetti and Guan 2006). Yeast contains two

PDK1 orthologs, Pkh1 and Pkh2, which, however, contain

no PH domain and are apparently activated by sphingoli-

pids rather than by phosphoinositides (Casamayor et al.
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1999; Friant et al. 2001; Liu et al. 2005a, b). Sch9 also

contains a PDK1 consensus site and it was found that

phosphorylation of this site by Pkh1/2 activated Sch9 in

vitro (Liu et al. 2005a; Urban et al. 2007). Moreover,

phosphorylation of the PDK1 site appears to be essential

for Sch9 to function in vivo for the control of cell growth

control and stress resistance (Roelants et al. 2004). To date,

there are no data that show that Sch9 is a target of the

rapamycin-insensitive TORC2. In contrast, Sch9 is directly

phosphorylated by TORC1 on at least five residues in the

C-terminal half and these phosphorylation events are crit-

ical for its catalytic activity (Urban et al. 2007). As already

described above and illustrated in Fig. 4, the phosphory-

lation of Sch9 allows TORC1 to prevent the induction of

typical G0 traits as well as to stimulate ribosomal biogen-

esis and translation initiation (Urban et al. 2007; Huber

et al. 2009). A recent report indicates that TORC1-depen-

dent phosphorylation of Sch9 is subject to feedback control

since it is negatively regulated by Sfp1, a transcriptional

activator of ribosomal protein and ribi gene expression,

which itself is activated by TORC1 (Lempiainen et al.

2009). Note that in addition to the Pkh- and TORC1-

dependent phosphorylation sites, Sch9 appears to be

phosphorylated at many additional residues, indicating that

yet unidentified protein kinases may control Sch9 function

(Urban et al. 2007). Like TORC1, Sch9 is predominantly

localized at the vacuolar membrane (Jorgensen et al. 2004;

Urban et al. 2007). In this context, it should be mentioned

that Sch9 possesses no PH domain but instead contains a

calcium-dependent C2 domain at its N-terminus. While the

role of this domain for Sch9 function remains to be

determined, it may possibly serve to regulate the subcel-

lular localization of Sch9, as C2 domains can bind phos-

pholipids and are known to serve as membrane-targeting

domains in other proteins (Lemmon 2008). A fraction of

the Sch9 pool appears also to be localized in the nucleus as

co-immunoprecipitation analysis showed that Sch9 is

recruited to the chromatin of osmostress-responsive genes

(Pascual-Ahuir and Proft 2007).

One major role of Sch9 is to regulate translation in

function of nutrient availability and the growth potential.

As such, Sch9 controls the expression of RP genes and of

the Ribi regulon, by interfering with the transcriptional

processes conducted by the RNA polymerases I, II and III

(Crauwels et al. 1997a, b; Jorgensen et al. 2004; Roosen

et al. 2005; Urban et al. 2007; Smets et al. 2008; Huber

et al. 2009). Concerning RNA polymerase I transcription,

Sch9 appears to be required to maintain the optimal

activity of the polymerase, presumably by promoting the

recruitment of the catalytic subunit Rpa190 to the rDNA

locus. In addition, Sch9 is essential for the proper pro-

cessing of the 35S transcript into the 25S, 18S and 5.8S

rRNA and at least one component of the processome, i.e.

Rps6, was shown to be phosphorylated by Sch9. The latter

led to the conclusion that Sch9 should be considered as the

orthologue of the mammalian kinase S6K1, rather than

being the yeast counterpart of PKB (Urban et al. 2007;

Huber et al. 2009). Possibly, Sch9 may still combine the

functions of S6K and PKB and thus represent the ancestor

from which both kinases have evolved. For processes

mediated by the RNA polymerase II, Sch9 phosphorylates

and inhibits the activity of the transcriptional repressors

Stb3 and Dot6/Tod6, which, respectively, bind the RRPE

and PAC elements in the promoters of ribi genes (Huber

et al. 2009). For RNA polymerase III-dependent tran-

scription, the downstream target of Sch9 is Maf1, the

repressor that is also regulated by PKA and TORC1. Here,

Sch9 was first reported to phosphorylate Maf1 at a subset

of the sites that are also recognized by PKA (Lee et al.

2009). Most recently, it was shown that Sch9 phosphory-

lates Maf1 at seven distinct sites in vitro and that it thereby

can not only partially inhibit nuclear accumulation of Maf1

after rapamycin treatment, but also completely block the

repressive association between Maf1 and the RNA Pol III

subunit Rpc82 (Huber et al. 2009). In addition to ribosome

biogenesis, Sch9 controls the expression of different tRNA

synthetases, proteins involved in amino acid metabolism as

well as translation initiation and elongation factors

(Crauwels et al. 1997b; Roosen et al. 2005) and recent

evidence suggests that Sch9 also controls the phosphory-

lation status of eIF2a (Urban et al. 2007). Hence, Sch9

functions as a central coordinator of protein synthesis and

this may explain why sch9D cells are characterized by a

small cell size, since, indeed, the translational capacity of a

cell is tightly coupled to the size threshold at which cells

commit to cell division (Jorgensen et al. 2002, 2004).

Several studies implicated Sch9 in the regulation of the

cellular response to stress. Best studied is its role in the

regulation of the protein kinase Rim15, which in turn

controls the expression of stress-responsive genes through

the transcriptional activators Gis1 and Msn2/4 that,

respectively, bind to the PDS and STRE elements

(Crauwels et al. 1997a; Pedruzzi et al. 2003; Cameroni

et al. 2004; Roosen et al. 2005). Sch9 phosphorylates

Rim15 at Ser1061 in vitro and this phosphorylation event is

necessary for normal cytoplasmic retention of Rim15

(Pedruzzi et al. 2003; Wanke et al. 2008). Mechanistically,

phosphorylated Ser1061 in Rim15, together with phos-

phorylated Thr1075 by the Pho85–Pho80 kinase complex

(see also below), may allow Rim15 to engage in binding

the two monomeric subunits within a single 14-3-3 (Bmh2)

protein dimer (Wanke et al. 2005, 2008) and thereby

guarantee optimal sequestration of Rim15 in the cytoplasm

(Fig. 5). As expected, the regulation of Rim15 localization

by Sch9 was also found to be dependent on TORC1 sig-

nalling as rapamycin treatment causes dephosphorylation
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of the 14-3-3-binding site and enforces nuclear accumula-

tion of Rim15 (Pedruzzi et al. 2003; Wanke et al. 2005;

Urban et al. 2007). In addition to control via Rim15,

TORC1 and Sch9 independently regulate the effectors

Msn2/4 and Gis1. As mentioned above, TORC1 controls

the phosphorylation and cytoplasmic retention of Msn2 via

the Tap42-PP2A-dependent route (Beck and Hall 1999;

Duvel et al. 2003; Santhanam et al. 2004). Sch9, on the

other hand, is essential to maintain the Gis1 activity, which

explains why Sch9 and TORC1 exert essentially opposed

effects for the expression of the PDS genes at the diauxic

shift (Roosen et al. 2005; Smets et al. 2008). How Sch9

stimulates Gis1 is not known, but it is tempting to speculate

that it may involve a function of Sch9 that was only

recently uncovered. Indeed, for the induction of osmo-

stress-responsive genes, Sch9 appears to act as a chroma-

tin-associated transcriptional activator since it is recruited

to the promoter region of these genes when yeast is

exposed to osmotic stress (Pascual-Ahuir and Proft 2007).

This recruitment is independent of TORC1 but requires

Sko1, a transcriptional activator of osmostress genes, and

Hog1, a mitogen-activated protein kinase (MAPK) that is

part of osmoregulatory signalling cascade. In vitro

experiments demonstrated that Sch9 interacts with both

Sko1 and Hog1 and that Sch9 is able to phosphorylate

Sko1 (Hohmann et al. 2007; Pascual-Ahuir and Proft

2007). Moreover, a recent genome-wide transcriptional

analysis revealed other genes that require Sch9 for their

optimal expression, while being negatively regulated by

TORC1 (Smets et al. 2008). These include several genes

encoding mitochondrial functions, such as proteins

involved in the tricarboxylic acid cycle, the fatty acid

metabolism as well as mitochondrial ribosomal proteins.

The same study also showed that Sch9 acts independent of

TORC1 to reduce the basal expression of NDP target

genes, such as GAP1, which encodes the general amino

acid permease, as well as genes regulated by GAAC

pathway and its central transcription factor Gcn4.

Finally, the role of Sch9 for the induction of autophagy

was studied in more detail. These studies revealed that

autophagy is induced in yeast cells upon the simultaneous

inactivation of Sch9 and PKA (Yorimitsu et al. 2007). This

induction required the Atg1 kinase complex and was only

in part dependent on the presence of Rim15 and Msn2/4.

Interestingly, neither Rim15 nor Msn2/4 seemed to be

essential for rapamycin-induced autophagy and the

Fig. 5 The Rim15 protein

kinase acts as a nutritional

integrator in S. cerevisiae.

Rim15 is regulated by at least

four nutrient signalling protein

kinases. In response to glucose,

PKA directly phosphorylates

and thereby inactivates the

kinase activity of Rim15. Active

TORC1 and Sch9 promote

cytoplasmic retention of Rim15.

Notably, TORC1 favours

phosphorylation of Rim15 at

both Ser1061 (via activation of

Sch9) and Thr1075 (via

inhibiting a yet unidentified

protein phosphatase) to promote

the association of Rim15 with a

14-3-3/Bmh2-protein dimer for

its optimal sequestration in the

cytoplasm. Inactivation of

TORC1 and Sch9 results in the

nuclear translocation of Rim15

where this kinase controls the

expression of Msn2/4- and

Gis1-dependent genes. Rim15 is

subject to autophosphorylation,

which apparently stimulates

nuclear export. Also Pho85–

Pho80, which phosphorylates

Rim15 at Thr1075, controls the

nuclear export of Rim15. PDS
post-diauxic shift, STRE stress-

responsive element

16 Curr Genet (2010) 56:1–32

123



combined inactivation of Sch9 and PKA appeared to

additively stimulate autophagy, indicating that also for

autophagy Sch9 and PKA act, at least in part, in parallel to

the TORC1 pathways (Yorimitsu et al. 2007).

The Pho85–Pho80 kinase complex

Pho85 is a cyclin-dependent kinase (CDK) in S. cerevisiae

with distinct functions in several pathways, which is con-

firmed by the pleiotropic phenotype of a pho85D strain.

Deletion of PHO85 results in slow growth with a G1-delay

on rich medium and a severe growth defect on poor carbon

and nitrogen sources (Lee et al. 2000). More specifically,

mutant pho85D cells display a background-dependent hy-

peraccumulation of glycogen (Timblin et al. 1996; Lee

et al. 2000), morphology and polarity defects (Measday

et al. 1997; Tennyson et al. 1998), constitutive expression

of phosphate-responsive or so-called PHO genes, CWI

defects and hypersensitivity to stress conditions (Huang

et al. 2002), sporulation defects (Gilliquet and Berben

1993), aberrant expression profiles during the diauxic shift

(Nishizawa et al. 2004) and a hyperinduction of nutrient

starvation-induced autophagy (Wang et al. 2001). Consis-

tent with its multiple functions, Pho85 can interact with ten

different cyclins that can be divided into two different

subfamilies according to their sequence similarities

(Measday et al. 1997). The first so-called Pcl1,2 subfamily

includes the cyclins Pcl1, Pcl2, Pcl5, Pcl9 and Clg1. The

second subfamily is denoted as the Pho80 subfamily and

includes Pcl6, Pcl7, Pcl8, Pcl10 and Pho80. The interaction

of Pho85 with its corresponding cyclin is essential for its

activity and to confer substrate specificity. In this review,

we will focus on Pho80, which is the major cyclin involved

in phosphate metabolism and regulation of proper entry

into G0 under phosphate starving conditions. For the other

cyclins, we refer to a recent review (Huang et al. 2007a).

The role of Pho85–Pho80 kinase complex in phosphate

metabolism and phosphate signalling

The Pho85–Pho80 kinase complex plays a central role in

the PHO pathway, which allows cells to properly respond

to changes in extra- and/or intracellular phosphate levels,

as outlined in Fig. 6. Pho85–Pho80 controls the localiza-

tion of the Pho4 transcription factor, which is essential for

induction of the PHO genes (O’Neill et al. 1996; Ogawa

et al. 2000), leading to optimized phosphate acquisition

(see further). Under phosphate limiting conditions, the

Fig. 6 Central role of Pho85–

Pho80 in Pi-signalling and

Pi-dependent stress responses in

S. cerevisiae. Activation of the

PHO pathway in response to

Pi-limiting conditions requires

inhibition of Pho85–Pho80 by

Pho81 and subsequent

transcription of the PHO genes

via interaction of Pho2 and

Pho4. Inositol phosphate

metabolism and adenosine

nucleotide metabolism both

influence Pi-dependent

responses on different levels.

Additionally, Pho85–Pho80 also

negatively regulates Rim15 and

Crz1. Dashed lines represent

putative or indirect interactions.

See text for further details. PDS
post-diauxic shift, CDRE
calcineurin-dependent response

element

Curr Genet (2010) 56:1–32 17

123



low-phosphate signal activates the PHO pathway by trig-

gering activation of the CDK-inhibitor (CKI) Pho81

(Lenburg and O’Shea 1996). In turn, the active Pho81

maintains the Pho85–Pho80 kinase complex in its inactive

form and thereby Pho81 prevents that the kinase complex

would hyperphosphorylate Pho4 (O’Neill et al. 1996).

Under these conditions, Pho4 can interact with its nuclear

import factor Pse1 and translocate into the nucleus, where

it activates the transcription of the PHO genes (Kaffman

et al. 1998b). However, transcriptional activation occurs

only in the presence of the transcription cofactor Pho2,

which binds to a Pho4 dimer to form a stabilized hetero-

trimeric protein complex (Magbanua et al. 1997; Shao et al.

1998). Pho2 must be phosphorylated at Ser230 in order to

bind unphosphorylated dimeric Pho4 and it appears that

this phosphorylation is also regulated by phosphate avail-

ability (Xia and Ao 1999; Liu et al. 2000). The proteins that

control phosphorylation of Pho2 under physiological con-

ditions have not been identified, but it is known that the

Cdc28 is able to phosphorylate Pho2 in vitro (Liu et al.

2000). Note that the function of Pho2 is not restricted to

phosphate signalling, as this cofactor is also involved in

mating-type switching, through its interaction with Swi5

(Bhoite and Stillman 1998; Bhoite et al. 2002), as well as in

one-carbon metabolism and especially adenine synthesis,

through interaction with Bas1 (Zhang et al. 1997; Bhoite

et al. 2002; Subramanian et al. 2005). The latter is of

particular interest since it provides a link between phos-

phate signalling and adenylic nucleotide synthesis as will

be discussed below.

When phosphate is abundant, Pho81 is inactivated and

as a result the Pho85–Pho80 kinase complex becomes

active, which can now phosphorylate Pho4 resulting in the

disassembly of the Pho4–Pho2 heterotrimeric protein

complex and the repression of the PHO genes. Phosphor-

ylated Pho4 then interacts with the export factor Msn5 to

be excluded from the nucleus (Kaffman et al. 1998a). The

first step in activation or repression of the PHO pathway

thus occurs via modulation of the activity of the Pho81

CKI. Pho81 is constitutively localized in the nucleus where

it is bound to the Pho80 cyclin under high- and low-Pi

conditions. Similarly, Pho81 is able to inhibit the Pho85–

Pcl7 kinase complex in response to low-phosphate levels

via direct interaction with the Pcl7 cyclin (Lee et al. 2000).

The Pho81 protein consists of 1,179 amino acids, but only

the so-called minimum domain, located between the amino

acid 644 to 723, is essential for inhibition of Pho85–Pho80

towards Pho4 (Huang et al. 2001). Other domains of Pho81

have multiple functions towards non-Pho4 targets of the

Pho85–Pho80 kinase or inhibit other Pho85–cyclin com-

plexes (Huang et al. 2007b; Swinnen et al. 2005). Since

Pho81 always interacts with the Pho80 cyclin, but only

inhibits the Pho85–Pho80 kinase under phosphate limiting

conditions, Pho81 may be regulated by post-translational or

allosteric activations. Recent evidence shows that inositol

polyphosphate species play a particular role in this regu-

lation. More specifically, isoform synthesized by Vip1 was

found to bind non-covalently with Pho80–Pho85–Pho81,

thereby inducing additional interactions between Pho81

and Pho80–Pho85 that prevent substrates from accessing

the kinase active site (Lee et al. 2007; Lee et al. 2008b).

Intriguingly, under phosphate starvation conditions, Pho4-

dependent antisense and intragenic RNA transcription in

the KCS1 locus induces downregulation of the Kcs1

activity, leading to a positive feedback loop for activation

of the PHO genes (Nishizawa et al. 2008a).

Activation of the PHO pathway results in increased

expression or breakdown of proteins involved in the uptake

and storage of phosphate (Ogawa et al. 2000). For the

uptake of phosphate, the regulation occurs both by Pho4-

dependent transcriptional and post-transcriptional pro-

cesses. S. cerevisiae encodes for two different phosphate

transporter systems: a low-affinity system consisting of

Pho87, Pho90 and Pho91 and a high-affinity system con-

taining Pho84 and Pho89. Under phosphate limiting con-

ditions, genes encoding for high-affinity phosphate

transporters, i.e. PHO84 and PHO89, are induced. In

contrast, the expression of the genes encoding the low-

affinity system is independent of Pho4 and phosphate

availability (Auesukaree et al. 2003). Nonetheless, Pho4

may control the low-affinity system via the induction of

Spl2 (Wykoff et al. 2007). Spl2, which was originally

discovered as a multi-copy suppressor of plc1D (Flick and

Thorner 1998), appears to limit the phosphate-uptake

velocity of Pho87 and Pho90 in vivo through its interaction

with the SPX domain of these low-affinity phosphate

transporters (Hurlimann et al. 2009). This provides yet

another feedback loop for the control of the PHO pathway.

Thus, while the low-affinity phosphate transporters Pho87

and Pho90 are active at the plasma membrane under high-

phosphate conditions, the high-affinity system takes over

the phosphate uptake function of Pho87 and Pho90 under

phosphate limiting conditions. The activity of Pho91 was

shown to be independent of Pho4 and Spl2 (Wykoff et al.

2007) and Pho91 was identified as a vacuolar phosphate

transporter essential for proper polyphosphate accumula-

tion (Hurlimann et al. 2007). For storage of phosphate, the

products of the PHM1 to PHM5 genes are important. These

proteins are involved in orthophosphate and polyphosphate

accumulation and their expression is induced under phos-

phate limiting conditions (Ogawa et al. 2000; Auesukaree

et al. 2004). This may seem to be contradictory since

polyphosphate is consumed under phosphate limiting

conditions. However, the increased intracellular phosphate

levels obtained by high-affinity phosphate uptake have to

be stored as polyphosphate in the vacuole to avoid negative
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feedback, in particular to the Pho84 transporter, sustaining

in this way a high rate of phosphate uptake under phos-

phate limiting conditions. In addition, several repressible

acid phosphatases, encoded by PHO5, PHO11 and PHO12

(rAPases) as well as the repressible alkaline phosphatase

PHO8 (rALPases), are induced (Persson et al. 2003). The

acid phosphatases are secreted into the periplasmic space

where they act on a multitude of phospho-ester substrates,

while the alkaline phosphatase Pho8, localized at the vac-

uole, acts on other phosphate-containing substrates to lib-

erate free phosphate (Klionsky and Emr 1989). Genes

involved in catabolism of alternative phosphorous sources

(GIT1, GDE1 and HOR2) are also induced under phosphate

limiting conditions (Ogawa et al. 2000; Almaguer et al.

2003). Finally, PHO81 is itself induced under these con-

ditions, comprising a third positive feedback loop for

constitutive activation of the PHO pathway. Several other

PHO genes undergo Pho4-dependent induction under low-

phosphate conditions (Ogawa et al. 2000), but for most of

them no clear function in phosphate metabolism or phos-

phate signalling has been identified. Recently, ChIP-on-

ChIP analysis revealed 18 novel PHO-type genes with no

apparent functional relationship to phosphate metabolism

(Nishizawa et al. 2008a). Since most of them have already

been identified as upregulated during nitrogen starvation

and entry into stationary phase, it can be concluded that

Pho4 has a possible role in a cross-talk between phosphate

starvation and other nutrient starvation-induced stress

conditions.

Apart from the main function of Pho4 to induce the PHO

genes under phosphate limiting conditions, this transcrip-

tion factor has been shown to be involved in other cellular

processes. Two major phenotypes of a pho85D strain are

the absence of growth on poor nutrient sources (Lee et al.

2000) and vacuolar dysfunction (Huang et al. 2002) and

involvement of Pho4 appears to play a role in both pro-

cesses. The additional deletion of PHO4 can rescue the

growth defects of a pho85D strain on non-fermentable

carbon sources and proline as sole nitrogen source

(Nishizawa et al. 1999; Popova Iu et al. 2000). However,

this phenotype is not only dependent on the Pho80 cyclin

but also seems to involve the cyclins Pcl6 and Pcl7 (Lee

et al. 2000), though a possible link between Pcl6 and Pcl7

and Pho4 was never investigated. Secondly, a pho85D and

a pho80D strain show hypersensitivity to vacuolar stress

conditions, such as high osmolarity, salt stress and elevated

Ca2? levels, and this is due to severe abnormalities in

vacuolar structure and function (Cohen et al. 1999; Huang

et al. 2002). These vacuolar phenotypes are completely

suppressed by additional deletion of PHO4 or VTC4

(PHM3), a Pho4-activated gene involved in polyphosphate

metabolism as discussed above (Ogawa et al. 2000). Pho4-

dependent hyperinduction of Vtc4 thus leads to vacuolar

dysfunction and sensitivity to various environmental stress

conditions. Interestingly, the ChIP-on-Chip analysis, men-

tioned above, revealed phosphate independent but Pho4-

dependent transcription of several genes, providing addi-

tional evidence that a nuclear pool of Pho4 exists that can

bind to a promoter and control transcription under high

phosphate conditions (Nishizawa et al. 2008a). In this way,

Pho4 was shown to act as a transcriptional repressor as it

negatively regulates the transcription of CIS3, YPS3 and

SNZ1 (Nishizawa et al. 2008a, b). Additionally, a role for

Pho4 in G1-arrest caused by DNA damage has also been

reported (Wysocki et al. 2006).

The role of the Pho85–Pho80 kinase complex in phosphate

starvation-induced stress responses

Inorganic phosphate is an essential nutrient for all organ-

isms required for biosynthesis of nucleotides, phospholip-

ids and metabolites, making it an important messenger to

signal a growth limiting metabolic state and reduced

developmental capacities of the cell. Similar to glucose or

nitrogen starvation conditions, the depletion of phospho-

rous sources forces yeast cells to enter the quiescent

G0-state (Swinnen et al. 2006).

Thorough investigation of phosphate starvation-induced

stress responses uncovered a central role for the Pho81 CKI

in the activation of Rim15, the kinase that is essential for

the accumulation of the reserve carbohydrate glycogen and

the stress protectant trehalose and the expression of stress-

responsive genes under glucose starvation conditions

(Reinders et al. 1998; Cameroni et al. 2004; Roosen et al.

2005). Indeed, in a pho81D mutant strain, like in a rim15D
strain, the accumulation of trehalose and the expression of

PDS genes, like SSA3 and GRE1, are clearly delayed and

reduced under phosphate starving conditions, while an

effect on the expression of STRE genes appears less

obvious (Swinnen et al. 2005). Interestingly, deletion of

PHO85 reverted all of the observed phenotypes in a

pho81D strain, but deletion of PHO80, while fully revert-

ing the defect in PDS-driven gene expression, only par-

tially reverted the trehalose accumulation defect in a

pho81D strain. This indicates that additional Pho85-asso-

ciated cyclins are required to maintain proper trehalose

levels. Note that the regulation of PDS genes particularly

requires the protein kinase Sch9, and, therefore, it may not

come as a surprise that also this kinase plays a role in

controlling these genes in response to phosphate avail-

ability, which is further reflected by the fact that the

combined deletion of PHO85 and SCH9 is synthetic lethal

(Swinnen et al. 2005). As discussed above, Pho81 gets

activated when phosphate becomes limiting and this results

in nuclear translocation of Pho4 and the activation of the

PHO genes. For this process, the minimum domain of

Curr Genet (2010) 56:1–32 19
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Pho81 is sufficient (Huang et al. 2001). In contrast, the

control of Rim15-dependent phenotypes requires full-

length Pho81, providing evidence that Pho81 is able to

discriminate between different effectors of the same

Pho85–Pho80 kinase (Swinnen et al. 2005). The molecular

mechanism underlying this discrimination is still largely

elusive, but several phosphorylation sites on Pho81 (Knight

et al. 2004) and an involvement of inositol polyphosphates

(Lee et al. 2008b) could be essential.

Meanwhile, it is known that Pho85–Pho80 promotes the

nuclear exclusion of Rim15 when phosphate is abundantly

available (Wanke et al. 2005). This is mediated by Pho80–

Pho85-dependent phosphorylation of Rim15 on Thr1075,

which favours the association of Rim15 with the 14-3-3

protein Bmh2 in the cytoplasm (Wanke et al. 2005).

Conversely, TORC1 inactivation triggers (likely due to the

activation of protein phosphatases) dephosphorylation of

Rim15 at Thr1075, thereby favouring accumulation of

Rim15 in the nucleus. Since Pho85–Pho80 is mainly

localized within the nucleus and TORC1 is predominantly

associated with the vacuolar membrane (Kaffman et al.

1998a; Sturgill et al. 2008), Pho85–Pho80 and TORC1 may

act on different pools of Rim15. Interestingly, the intrinsic

protein kinase activity of Rim15 is also required for its

nuclear export (Wanke et al. 2005).

The role of the Pho85–Pho80 kinase complex in Ca2?

signalling and alkaline stress response

The third in vivo effector of the Pho85–Pho80 kinase is the

Calcineurin Responsive Zinc finger transcription factor 1,

Crz1. This protein was identified via a synthetic dosage

lethality screen in a pho85D and a pho80D strain and

localization and phosphorylation studies confirmed that

Pho85–Pho80 promotes nuclear exclusion of Crz1 via

direct phosphorylation (Sopko et al. 2006). Crz1 is known

to be activated via dephosphorylation by the serine/threo-

nine protein phosphatase Calcineurin, consisting of two

catalytic subunits Cna1 and Cna2 and a regulatory subunit

Cnb1, in response to ion stress involving Li?, Na?, Mn2?

and Ca2?. Activation of Calcineurin promotes nuclear

translocation of Crz1 via interaction with its import factor

Nmd5 (Polizotto and Cyert 2001), thereby inducing tran-

scriptional activation of the ‘‘calcineurin-dependent

response element’’ (CDRE) genes such as the Na?-ATPase

ENA1/PMR2, the Ca2?-ATPases PMC1 and PMR1 and the

catalytic subunit of the b-1-3 glucan synthase FKS2

(Matheos et al. 1997; Stathopoulos and Cyert 1997;

Stathopoulos-Gerontides et al. 1999). Ion stress responses

are often transient and after adaptation the subsequent

nuclear export of Crz1 occurs via interaction with its export

factor Msn5 (Boustany and Cyert 2002). Additional fine-

tuning of the Crz1-dependent response occurs via

regulation by two other kinases. Hrr25, a yeast casein

kinase type 1 (CK1) homologue, stimulates nuclear

exclusion of Crz1 (Kafadar et al. 2003), while PKA inhibits

nuclear import of Crz1 (Kafadar and Cyert 2004), both of

which occur through direct phosphorylation.

A physiological role for the regulation of Crz1 by the

Pho85–Pho80 kinase remains elusive. Possibly, Pho85–

Pho80 regulates expression of the high-affinity phosphate

transporter Pho89 under alkaline stress response (Serrano

et al. 2002). It was shown that increasing the extracellular

pH to 7.6 leads to induction of PHO84 and PHO89,

encoding the high-affinity phosphate transporters, and

PHM1, PHM2 and PHM3, encoding the vacuolar poly-

phosphate synthases. Further investigation revealed a strict

Pho4-dependent induction of PHO84, while full induction

of PHO89 required both Pho4 and Crz1. Under phosphate

starving conditions, however, induction of PHO89 is only

Pho4-dependent (Swinnen et al. 2005), providing evidence

for a Calcineurin-dependent response under alkaline con-

ditions, which is absent in a low-phosphate environment.

Specific domains of Pho81 may inhibit the Pho85–Pho80

kinase towards Crz1 and Pho4, which can lead to full

activation of PHO89 in combination with the activation of

Calcineurin under alkaline pH conditions.

Connections between the PHO pathway, the purine

pathway and inositol phosphate metabolism

In yeast, the amount of phosphate in nucleotides resembles

the free intracellular orthophosphate concentration, making

a co-ordinated regulation of phosphate metabolism and

nucleotide synthesis feasible (Gauthier et al. 2008). Fur-

thermore, mutants lacking the genes that encode the

adenylate kinase Adk1, catalysing the interconversion of

AMP and ATP to ADP (Konrad 1988), or the adenosine

kinase Ado1, required for the synthesis of AMP from

adenosine and ATP (Lecoq et al. 2001), display a Pho81-

dependent nuclear translocation of Pho4 and, for instance,

constitutive expression of the secreted acid phosphatase

Pho5, even under conditions of high extracellular phos-

phate levels (Auesukaree et al. 2005; Huang and O’Shea

2005; Gauthier et al. 2008). In addition, the expression of

PHO genes, i.e. PHO84, appears to be responsive to

extracellular adenine (Gauthier et al. 2008). This inter-

connection of the control of phosphate metabolism and

adenylic nucleotides is further reflected in a common

requirement of the Pho2 transcriptional cofactor. Indeed,

apart from playing a crucial role in the control of phosphate

homeostasis, Pho2 together with the transcription factor

Bas1 co-regulates the expression of the so-called ADE

regulon that includes genes involved in the de novo syn-

thesis of purines (Daignan-Fornier and Fink 1992). Con-

sistently, a recent transcriptome analysis revealed that the
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metabolic intermediate AICAR (50-phosphoribosyl-5-

amino-4-imidazole carboxamide), which was previously

identified as a transcriptional regulator of the purine path-

way genes (Rebora et al. 2001; Rebora et al. 2005), also

mediates the expression of several PHO genes (Pinson

et al. 2009). These authors reported that Pho4 and Bas1

compete for Pho2 binding and that AICAR stimulates the

interaction between either Pho4 or Bas1 with Pho2.

As AICAR is known to stimulate the activity of the

AMP-dependent protein kinase in mammalian cells, it was

analysed whether the list of AICAR-responsive genes also

includes known Snf1 targets. However, no such genes were

found, suggesting that regulation of genes targeted by Pho2

does not involve AICAR activation of Snf1 (Pinson et al.

2009).

Several studies also established a link between phos-

phate signalling and inositol phosphate metabolism. Strains

deleted for PLC1, ARG82 and KCS1 were found to exhibit

constitutive expression and activity secreted phosphatases

such as Pho5. This phenotype is dependent on a functional

Pho81 and corresponds with the inability of these deletion

mutants to synthesize PP.IP4 and (PP)2.IP3 (Auesukaree

et al. 2005). Both PP.IP4 and (PP)2.IP3 can apparently

inhibit Pho81 and thereby repress the PHO genes under

high-phosphate conditions. In contrast, full induction of the

PHO genes under phosphate-limiting conditions requires

IP4 and IP5. These molecules appear to modulate the

activity of the SWI/SNF and INO80 chromatin remodelling

complexes, thereby affecting the induction of transcription

of some phosphate-responsive genes (Steger et al. 2003).

Thus, inositol polyphosphates and inositol pyrophosphates

modulate the expression of the PHO genes at different

levels and in opposite ways.

Conclusion: integration of nutrient-induced responses

For both unicellular and multicellular organisms, nutrients

are the essential building blocks to make the necessary

cellular components and metabolites. As outlined above,

nutrients fulfil also regulatory functions since they act as

triggers for several signalling pathways. Initial experi-

mental work started from the concept of linear pathways

acting in parallel, but along the road this concept changed

towards a nutrient-dependent signalling network with

extensive cross-talk between pathways at different levels.

Furthermore, it is now clear that pathways converge on

common effectors. As a consequence, one should bear in

mind that the phenotype observed when changing a par-

ticular nutritional stimulus, or when the flow through a

specific pathway is genetically modified, reflects the action

of a signalling network and thus that the propagation of a

signal can be enhanced, blocked or redirected dependent on

the overall nutrient availability and metabolic status of the

yeast cell. Therefore, it is not surprising that central sig-

nalling components can exert additive or opposed effects

dependent on the target being studied. Perhaps a good way

to picture signalling is by the principle of ‘gating’, which

was first reported by Iyengar in 1996 (Iyengar 1996; Jordan

and Iyengar 1998). He described that cAMP-activated PKA

acts as a gatekeeper to control the flow through several

signal transduction cascades in mammalian cells. This

phenomenon has been recognized in yeast as well (Roosen

et al. 2005). Although both papers concentrated on the

gatekeeper function of PKA, it obviously is also applicable

to other central kinases and phosphatases operating in a

signalling network.

Our insight into the constitution of the nutrient signal-

ling network has been advanced tremendously ever since

the whole yeast genome was fully sequenced and new

methods became available to study signalling events on a

genome-wide scale. Despite all the efforts, there are still

crucial gaps to be filled. For instance, we do not know how

the intracellular and extracellular glucose sensing systems

connect to each other to control the activity of adenylate

cyclase and PKA. Neither do we know how nutrients are

being sensed to drive the activation of TORC1 and Sch9.

One theme that is starting to emerge is the fine-tuning of

signalling by intracellular metabolic intermediates, such as

the influence of inositol phosphates and intermediates

formed by the purine biosynthesis pathway on phosphate

signalling. Without doubt there is still a lot to be discov-

ered, certainly when it comes to analysis of the concerted

action of different nutritional stimuli. Hence, it can be

expected that novel interconnection between individual

pathways will be found in the coming years.
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